Panel quantile regressions for estimating and predicting the Value--at--Risk of commodities
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- František Čech & Jozef Baruník, 2019. "Panel quantile regressions for estimating and predicting the value‐at‐risk of commodities," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(9), pages 1167-1189, September.
References listed on IDEAS
- Giot, Pierre & Laurent, Sebastien, 2003.
"Market risk in commodity markets: a VaR approach,"
Energy Economics, Elsevier, vol. 25(5), pages 435-457, September.
- GIOT, Pierre & LAURENT, Sébastien, 2003. "Market risk in commodity markets: a VaR approach," LIDAM Reprints CORE 1682, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- GIOT, Pierre & LAURENT, Sébastien, 2003. "Market risk in commodity markets: a VaR approach," LIDAM Discussion Papers CORE 2003028, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- David Cabedo, J. & Moya, Ismael, 2003. "Estimating oil price 'Value at Risk' using the historical simulation approach," Energy Economics, Elsevier, vol. 25(3), pages 239-253, May.
- Charles, Amélie & Darné, Olivier, 2017.
"Forecasting crude-oil market volatility: Further evidence with jumps,"
Energy Economics, Elsevier, vol. 67(C), pages 508-519.
- Amélie Charles & Olivier Darné, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Post-Print hal-01598141, HAL.
- Giacomini, Raffaella & Komunjer, Ivana, 2005.
"Evaluation and Combination of Conditional Quantile Forecasts,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
- Giacomini, Raffaella & Komunjer, Ivana, 2002. "Evaluation and Combination of Conditional Quantile Forecasts," University of California at San Diego, Economics Working Paper Series qt4n99t4wz, Department of Economics, UC San Diego.
- Raffaella Giacomini & Ivana Komunjer, 2003. "Evaluation and Combination of Conditional Quantile Forecasts," Boston College Working Papers in Economics 571, Boston College Department of Economics.
- Giot, Pierre & Laurent, Sebastien, 2004.
"Modelling daily Value-at-Risk using realized volatility and ARCH type models,"
Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
- Giot, P. & Laurent, S.F.J.A., 2001. "Modelling daily value-at-risk using realized volatility and arch type models," Research Memorandum 026, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- GIOT, Pierre & LAURENT, Sébastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," LIDAM Reprints CORE 1708, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Pierre Giot & Sébastien Laurent, 2002. "Modelling Daily Value-at-Risk Using Realized Volatility and ARCH Type Models," Computing in Economics and Finance 2002 52, Society for Computational Economics.
- Ing-Haw Cheng & Wei Xiong, 2014.
"Financialization of Commodity Markets,"
Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 419-441, December.
- Ing-Haw Cheng & Wei Xiong, 2013. "The Financialization of Commodity Markets," NBER Working Papers 19642, National Bureau of Economic Research, Inc.
- Hung, Jui-Cheng & Lee, Ming-Chih & Liu, Hung-Chun, 2008. "Estimation of value-at-risk for energy commodities via fat-tailed GARCH models," Energy Economics, Elsevier, vol. 30(3), pages 1173-1191, May.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018.
"Risk Everywhere: Modeling and Managing Volatility,"
The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
- Pedersen, Lasse Heje & Bollerslev, Tim & Hood, Benjamin & Huss, John, 2018. "Risk Everywhere: Modeling and Managing Volatility," CEPR Discussion Papers 12687, C.E.P.R. Discussion Papers.
- Cheong, Chin Wen, 2009. "Modeling and forecasting crude oil markets using ARCH-type models," Energy Policy, Elsevier, vol. 37(6), pages 2346-2355, June.
- Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2008.
"Quantile forecasts of daily exchange rate returns from forecasts of realized volatility,"
Journal of Empirical Finance, Elsevier, vol. 15(4), pages 729-750, September.
- Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2006. "Quantile Forecasts of Daily Exchange Rate Returns from Forecasts of Realized Volatility," The Warwick Economics Research Paper Series (TWERPS) 777, University of Warwick, Department of Economics.
- Clements, Michael P. & Galvao, Ana Beatriz & Kim, Jae H., 2006. "Quantile Forecasts of Daily Exchange Rate Returns from Forecasts of Realized Volatility," Economic Research Papers 269747, University of Warwick - Department of Economics.
- Chiu, Yen-Chen & Chuang, I-Yuan & Lai, Jing-Yi, 2010. "The performance of composite forecast models of value-at-risk in the energy market," Energy Economics, Elsevier, vol. 32(2), pages 423-431, March.
- Li, Z. & Hurn, A.S. & Clements, A.E., 2017. "Forecasting quantiles of day-ahead electricity load," Energy Economics, Elsevier, vol. 67(C), pages 60-71.
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Filip Žikeš & Jozef Baruník, 2016.
"Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility,"
Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
- Filip Zikes & Jozef Barunik, 2013. "Semiparametric Conditional Quantile Models for Financial Returns and Realized Volatility," Papers 1308.4276, arXiv.org.
- Žikeš, Filip & Baruník, Jozef, 2014. "Semiparametric Conditional Quantile Models for Financial Returns and Realized Volatility," FinMaP-Working Papers 20, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015.
"VAR for VaR: Measuring tail dependence using multivariate regression quantiles,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
- Habert white & Tae-Hwan Kim & Simone Manganelli, 2012. "VAR for VaR: Measuring Tail Dependence Using Multivariate Regression Quantiles," Working papers 2012rwp-45, Yonsei University, Yonsei Economics Research Institute.
- Manganelli, Simone & White, Halbert & Kim, Tae-Hwan, 2015. "VAR for VaR: measuring tail dependence using multivariate regression quantiles," Working Paper Series 1814, European Central Bank.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2000.
"Exchange Rate Returns Standardized by Realized Volatility are (Nearly) Gaussian,"
Multinational Finance Journal, Multinational Finance Journal, vol. 4(3-4), pages 159-179, September.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "Exchange Rate Returns Standardized by Realized Volatility Are (Nearly) Gaussian," Center for Financial Institutions Working Papers 00-29, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "Exchange Rate Returns Standardized by Realized Volatility are (Nearly) Gaussian," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-060, New York University, Leonard N. Stern School of Business-.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2000. "Exchange Rate Returns Standardized by Realized Volatility are (Nearly) Gaussian," NBER Working Papers 7488, National Bureau of Economic Research, Inc.
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011.
"The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
- Thomas Busch & Bent Jesper Christensen & Morten Ørregaard Nielsen, 2007. "The Role of Implied Volatility in Forecasting Future Realized Volatility and Jumps in Foreign Exchange, Stock, and Bond Markets," CREATES Research Papers 2007-09, Department of Economics and Business Economics, Aarhus University.
- Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2008. "The Role Of Implied Volatility In Forecasting Future Realized Volatility And Jumps In Foreign Exchange, Stock, And Bond Markets," Working Paper 1181, Economics Department, Queen's University.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
- Christoffersen, Peter & Lunde, Asger & Olesen, Kasper V., 2019.
"Factor Structure in Commodity Futures Return and Volatility,"
Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(3), pages 1083-1115, June.
- Peter Christoffersen & Asger Lunde & Kasper V. Olesen, 2014. "Factor Structure in Commodity Futures Return and Volatility," CREATES Research Papers 2014-31, Department of Economics and Business Economics, Aarhus University.
- Marimoutou, Velayoudoum & Raggad, Bechir & Trabelsi, Abdelwahed, 2009. "Extreme Value Theory and Value at Risk: Application to oil market," Energy Economics, Elsevier, vol. 31(4), pages 519-530, July.
- Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2016. "Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data," Energy Economics, Elsevier, vol. 56(C), pages 117-133.
- Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
- Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Youssef, Manel & Belkacem, Lotfi & Mokni, Khaled, 2015. "Value-at-Risk estimation of energy commodities: A long-memory GARCH–EVT approach," Energy Economics, Elsevier, vol. 51(C), pages 99-110.
- Reboredo, Juan C. & Ugolini, Andrea, 2016. "Quantile dependence of oil price movements and stock returns," Energy Economics, Elsevier, vol. 54(C), pages 33-49.
- Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.
- Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
- Robert F. Engle & Simone Manganelli, 2004.
"CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
- Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
- Robert Engle & Simone Manganelli, 2000. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Econometric Society World Congress 2000 Contributed Papers 0841, Econometric Society.
- Chkili, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014.
"Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory,"
Energy Economics, Elsevier, vol. 41(C), pages 1-18.
- Walid Chkili & Shawkat Hammoudeh & Duc Khuong Nguyen, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Working Papers 2014-325, Department of Research, Ipag Business School.
- Walid Chkili & Shawkat Hammoudeh & Duc Khuong Nguyen, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Working Papers 2014-389, Department of Research, Ipag Business School.
- Pierre Giot & Sébastien Laurent, 2007. "The information content of implied volatility in light of the jump/continuous decomposition of realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(4), pages 337-359, April.
- Belousova, Julia & Dorfleitner, Gregor, 2012. "On the diversification benefits of commodities from the perspective of euro investors," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2455-2472.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Ning & Gong, Yujing & Xue, Xiaohan, 2023. "Less disagreement, better forecasts: adjusted risk measures in the energy futures market," LSE Research Online Documents on Economics 118451, London School of Economics and Political Science, LSE Library.
- Ning Zhang & Yujing Gong & Xiaohan Xue, 2023. "Less disagreement, better forecasts: Adjusted risk measures in the energy futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1332-1372, October.
- Gong, Xu & Xu, Jun & Liu, Tangyong & Zhou, Zicheng, 2022. "Dynamic volatility connectedness between industrial metal markets," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
- Halkos, George & Tsirivis, Apostolos, 2019. "Using Value-at-Risk for effective energy portfolio risk management," MPRA Paper 91674, University Library of Munich, Germany.
- Baruník, Jozef & Čech, František, 2021. "Measurement of common risks in tails: A panel quantile regression model for financial returns," Journal of Financial Markets, Elsevier, vol. 52(C).
- Laporta, Alessandro G. & Merlo, Luca & Petrella, Lea, 2018. "Selection of Value at Risk Models for Energy Commodities," Energy Economics, Elsevier, vol. 74(C), pages 628-643.
- Filip Žikeš & Jozef Baruník, 2016.
"Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility,"
Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
- Filip Zikes & Jozef Barunik, 2013. "Semiparametric Conditional Quantile Models for Financial Returns and Realized Volatility," Papers 1308.4276, arXiv.org.
- Žikeš, Filip & Baruník, Jozef, 2014. "Semiparametric Conditional Quantile Models for Financial Returns and Realized Volatility," FinMaP-Working Papers 20, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Lyu, Yongjian & Wang, Peng & Wei, Yu & Ke, Rui, 2017. "Forecasting the VaR of crude oil market: Do alternative distributions help?," Energy Economics, Elsevier, vol. 66(C), pages 523-534.
- Frantisek Cech & Jozef Barunik, 2017.
"Measurement of Common Risk Factors: A Panel Quantile Regression Model for Returns,"
Working Papers IES
2017/20, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2017.
- Frantisek Cech & Jozef Barunik, 2017. "Measurement of Common Risk Factors: A Panel Quantile Regression Model for Returns," Papers 1708.08622, arXiv.org.
- Szymon Lis & Marcin Chlebus, 2021. "Comparison of the accuracy in VaR forecasting for commodities using different methods of combining forecasts," Working Papers 2021-11, Faculty of Economic Sciences, University of Warsaw.
- Halkos, George E. & Tsirivis, Apostolos S., 2019. "Value-at-risk methodologies for effective energy portfolio risk management," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 197-212.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
- Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
- Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
- Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
- Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
- Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
- Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017.
"Forecasting Value-at-Risk under Temporal and Portfolio Aggregation,"
Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
- Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2015. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Tinbergen Institute Discussion Papers 15-140/III, Tinbergen Institute, revised 19 Apr 2017.
- Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.
- Herrera, Rodrigo & Rodriguez, Alejandro & Pino, Gabriel, 2017. "Modeling and forecasting extreme commodity prices: A Markov-Switching based extreme value model," Energy Economics, Elsevier, vol. 63(C), pages 129-143.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-RMG-2018-08-20 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1807.11823. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.