IDEAS home Printed from https://ideas.repec.org/a/eee/intfin/v74y2021ics1042443121000147.html
   My bibliography  Save this article

An efficient method for pricing foreign currency options

Author

Listed:
  • Chen, Rongda
  • Zhou, Hanxian
  • Yu, Lean
  • Jin, Chenglu
  • Zhang, Shuonan

Abstract

We propose an efficient method for pricing foreign currency options given that foreign currency returns have heavy-tailed distributions. In our approach, the heavy tail of the distribution are modeled using Student-t distribution rather than normal distribution, and the parameters of Student-t distribution are estimated using the Method of Moments Estimator (MME). For verification purposes, we perform an empirical analysis based on actual foreign currency option prices. The results show that our foreign currency option pricing model captures more precision in distribution of currency returns and provides a better fit to the data compared to the option pricing models commonly used by currency traders. Our model is also computationally simpler than these models and is easier to apply in academic and practical settings.

Suggested Citation

  • Chen, Rongda & Zhou, Hanxian & Yu, Lean & Jin, Chenglu & Zhang, Shuonan, 2021. "An efficient method for pricing foreign currency options," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
  • Handle: RePEc:eee:intfin:v:74:y:2021:i:c:s1042443121000147
    DOI: 10.1016/j.intfin.2021.101295
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1042443121000147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.intfin.2021.101295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    2. Hochradl, Markus & Wagner, Christian, 2010. "Trading the forward bias: Are there limits to speculation?," Journal of International Money and Finance, Elsevier, vol. 29(3), pages 423-441, April.
    3. Zhang, Li-Hua & Zhang, Wei-Guo & Xu, Wei-Jun & Xiao, Wei-Lin, 2012. "The double exponential jump diffusion model for pricing European options under fuzzy environments," Economic Modelling, Elsevier, vol. 29(3), pages 780-786.
    4. Gabaix, Xavier & Verdelhan, Adrien & Rancière, Romain & Farhi, Emmanuel & Fraiberger, Samuel P., 2009. "Crash Risk in Currency Markets," CEPR Discussion Papers 7322, C.E.P.R. Discussion Papers.
    5. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    6. Sharif Mozumder & Ghulam Sorwar & Kevin Dowd, 2013. "Option pricing under non-normality: a comparative analysis," Review of Quantitative Finance and Accounting, Springer, vol. 40(2), pages 273-292, February.
    7. Ning Cai & S. G. Kou, 2011. "Option Pricing Under a Mixed-Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 57(11), pages 2067-2081, November.
    8. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
    9. Brahimi, Brahim & Abdelli, Jihane, 2016. "Estimating the distortion parameter of the proportional hazards premium for heavy-tailed losses under Lévy-stable regime," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 135-143.
    10. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2002. "Portfolio Value‐at‐Risk with Heavy‐Tailed Risk Factors," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 239-269, July.
    11. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    12. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    13. Nakajima Jouchi, 2013. "Stochastic volatility model with regime-switching skewness in heavy-tailed errors for exchange rate returns," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(5), pages 499-520, December.
    14. Josep Perello & Jaume Masoliver & Jean-Philippe Bouchaud, 2004. "Multiple time scales in volatility and leverage correlations: a stochastic volatility model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(1), pages 27-50.
    15. Robert JARROW & Andrew RUDD, 2008. "Approximate Option Valuation For Arbitrary Stochastic Processes," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31, World Scientific Publishing Co. Pte. Ltd..
    16. Li, Minqiang, 2008. "Approximate inversion of the Black-Scholes formula using rational functions," European Journal of Operational Research, Elsevier, vol. 185(2), pages 743-759, March.
    17. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    18. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    19. Belghitar, Yacine & Clark, Ephraim & Mefteh, Salma, 2013. "Foreign currency derivative use and shareholder value," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 283-293.
    20. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    21. Zhu, Min, 2013. "Return distribution predictability and its implications for portfolio selection," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 209-223.
    22. Xu, Weidong & Wu, Chongfeng & Li, Hongyi, 2011. "Accounting for the impact of higher order moments in foreign equity option pricing model," Economic Modelling, Elsevier, vol. 28(4), pages 1726-1729, July.
    23. George Allayannis & Jane Ihrig & James P. Weston, 2001. "Exchange-Rate Hedging: Financial versus Operational Strategies," American Economic Review, American Economic Association, vol. 91(2), pages 391-395, May.
    24. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    25. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382, July.
    26. L. Borland & J. P. Bouchaud, 2004. "A Non-Gaussian Option Pricing Model with Skew," Papers cond-mat/0403022, arXiv.org, revised Mar 2004.
    27. Chuang, Ming-Che & Wen, Chin-Hsiang & Lin, Shih-Kuei, 2020. "Valuation and empirical analysis of currency options," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 71-91.
    28. Fuh, Cheng-Der & Luo, Sheng-Feng & Yen, Ju-Fang, 2013. "Pricing discrete path-dependent options under a double exponential jump–diffusion model," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2702-2713.
    29. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 275-309.
    30. Du, Brian & Fung, Scott, 2018. "Directional information effects of options trading: Evidence from the banking industry," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 149-168.
    31. Jamie Alcock & Godfrey Smith, 2014. "Testing Alternative Measure Changes in Nonparametric Pricing and Hedging of European Options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(4), pages 320-345, April.
    32. Garman, Mark B. & Kohlhagen, Steven W., 1983. "Foreign currency option values," Journal of International Money and Finance, Elsevier, vol. 2(3), pages 231-237, December.
    33. Lisa Borland & Jean-Philippe Bouchaud, 2004. "A non-Gaussian option pricing model with skew," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 499-514.
    34. repec:dau:papers:123456789/11689 is not listed on IDEAS
    35. Bhat, Harish S. & Kumar, Nitesh, 2012. "Option pricing under a normal mixture distribution derived from the Markov tree model," European Journal of Operational Research, Elsevier, vol. 223(3), pages 762-774.
    36. David L. Olson & Desheng Dash Wu, 2017. "Value at Risk Models," Springer Texts in Business and Economics, in: Enterprise Risk Management Models, edition 2, chapter 6, pages 75-87, Springer.
    37. Wang, Xiaoyu & Xie, Dejun & Jiang, Jingjing & Wu, Xiaoxia & He, Jia, 2017. "Value-at-Risk estimation with stochastic interest rate models for option-bond portfolios," Finance Research Letters, Elsevier, vol. 21(C), pages 10-20.
    38. repec:dau:papers:123456789/1392 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Hao-Wen & Lin, Chinho, 2023. "Currency portfolio behavior in seven major Asian markets," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 540-559.
    2. Xianfei Hui & Baiqing Sun & Hui Jiang & Yan Zhou, 2022. "Modeling dynamic volatility under uncertain environment with fuzziness and randomness," Papers 2204.12657, arXiv.org, revised Oct 2022.
    3. Angela Ifeanyi Ujunwa & Augustine Ujunwa & Emmanuel Onah & Nnenna Georgina Nwonye & Onyedikachi David Chukwunwike, 2021. "Extending the determinants of currency substitution in Nigeria: Any role for financial innovation?," South African Journal of Economics, Economic Society of South Africa, vol. 89(4), pages 590-607, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.
    3. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    4. Wei-Guo Zhang & Zhe Li & Yong-Jun Liu & Yue Zhang, 2021. "Pricing European Option Under Fuzzy Mixed Fractional Brownian Motion Model with Jumps," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 483-515, August.
    5. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Oxford University Press, vol. 7(1), pages 2-42.
    6. Lisa Borland & Jean-Philippe Bouchaud, 2005. "On a multi-timescale statistical feedback model for volatility fluctuations," Science & Finance (CFM) working paper archive 500059, Science & Finance, Capital Fund Management.
    7. L. Borland & J. -Ph. Bouchaud, 2005. "On a multi-timescale statistical feedback model for volatility fluctuations," Papers physics/0507073, arXiv.org.
    8. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    9. Mozumder, Sharif & Dempsey, Michael & Kabir, M. Humayun & Choudhry, Taufiq, 2016. "An improved framework for approximating option prices with application to option portfolio hedging," Economic Modelling, Elsevier, vol. 59(C), pages 285-296.
    10. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    11. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    12. Chen, Si & Zhou, Zhen & Li, Shenghong, 2016. "An efficient estimate and forecast of the implied volatility surface: A nonlinear Kalman filter approach," Economic Modelling, Elsevier, vol. 58(C), pages 655-664.
    13. Rompolis, Leonidas S., 2010. "Retrieving risk neutral densities from European option prices based on the principle of maximum entropy," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 918-937, December.
    14. Gangadhar Nayak & Subhranshu Sekhar Tripathy & Agbotiname Lucky Imoize & Chun-Ta Li, 2024. "Application of Extended Normal Distribution in Option Price Sensitivities," Mathematics, MDPI, vol. 12(15), pages 1-18, July.
    15. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    16. Yuji Yamada & James Primbs, 2004. "Properties of Multinomial Lattices with Cumulants for Option Pricing and Hedging," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 335-365, September.
    17. Pal, Sumantra, 2018. "How to intervene in foreign exchange market without buying/selling dollars?," EconStor Preprints 181880, ZBW - Leibniz Information Centre for Economics.
    18. Pakorn Aschakulporn & Jin E. Zhang, 2022. "Bakshi, Kapadia, and Madan (2003) risk-neutral moment estimators: A Gram–Charlier density approach," Review of Derivatives Research, Springer, vol. 25(3), pages 233-281, October.
    19. Ryszard Kokoszczyński & Paweł Sakowski & Robert Ślepaczuk, 2017. "Which Option Pricing Model Is the Best? HF Data for Nikkei 225 Index Options," Central European Economic Journal, Sciendo, vol. 4(51), pages 18-39, December.
    20. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfin:v:74:y:2021:i:c:s1042443121000147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/intfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.