IDEAS home Printed from https://ideas.repec.org/p/cnv/wpaper/dt_67en.html
   My bibliography  Save this paper

Financial density forecasts: A comprehensive comparison of risk-neutral and historical schemes

Author

Listed:
  • Ricardo Crisóstomo
  • Lorena Couso

Abstract

We investigate the forecasting ability of the most commonly used benchmarks in financial economics. We approach the main methodological caveats of probabilistic forecasts studies –small samples, limited models and non-holistic validations– by performing a comprehensive comparison of 15 predictive schemes during a time period of over 21 years. All densities are evaluated in terms of their statistical consistency, local accuracy and forecasting errors. Through the development of a new indicator, the Integrated Forecast Score (IFS), we show that risk-neutral densities outperform historical-based predictions in terms of information content. We find that the Variance Gamma model generates the highest out-of-sample likelihood of observed prices and the lowest predictive errors, whereas the ARCH-based GJR-FHS delivers the most consistent forecasts across the entire density range. In contrast, lognormal densities, the Heston model or the non-parametric Breeden-Litzenberger formula yield biased predictions and are rejected in statistical tests.

Suggested Citation

  • Ricardo Crisóstomo & Lorena Couso, 2017. "Financial density forecasts: A comprehensive comparison of risk-neutral and historical schemes," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
  • Handle: RePEc:cnv:wpaper:dt_67en
    as

    Download full text from publisher

    File URL: http://www.cnmv.es/DocPortal/Publicaciones/MONOGRAFIAS/DT67en.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    3. Yun, Jaeho, 2014. "Out-of-sample density forecasts with affine jump diffusion models," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 74-87.
    4. James E. Matheson & Robert L. Winkler, 1976. "Scoring Rules for Continuous Probability Distributions," Management Science, INFORMS, vol. 22(10), pages 1087-1096, June.
    5. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    6. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    7. Shackleton, Mark B. & Taylor, Stephen J. & Yu, Peng, 2010. "A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2678-2693, November.
    8. Dr. James Mitchell, 2005. "Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR ÔfanÕ charts of inflation," National Institute of Economic and Social Research (NIESR) Discussion Papers 253, National Institute of Economic and Social Research.
    9. Ivanova, Vesela & Puigvert Gutiérrez, Josep Maria, 2014. "Interest rate forecasts, state price densities and risk premium from Euribor options," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 210-223.
    10. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    11. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    12. Liu, Xiaoquan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2007. "Closed-form transformations from risk-neutral to real-world distributions," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1501-1520, May.
    13. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    14. Alonso, Francisco & Blanco, Roberto & Rubio Irigoyen, Gonzalo, 2005. "Testing the Forecasting Performance of Ibex 35 Option-implied Risk-neutral Densities," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    15. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    16. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    17. Esben Høg & Leonidas Tsiaras, 2011. "Density forecasts of crude‐oil prices using option‐implied and ARCH‐type models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(8), pages 727-754, August.
    18. James Mitchell & Stephen G. Hall, 2005. "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR ‘Fan’ Charts of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 995-1033, December.
    19. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    20. Pierre Giot & Sébastien Laurent, 2007. "The information content of implied volatility in light of the jump/continuous decomposition of realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(4), pages 337-359, April.
    21. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    22. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    23. Giovanni Barone Adesi & Robert F. Engle & Loriano Mancini, 2014. "A GARCH Option Pricing Model with Filtered Historical Simulation," Palgrave Macmillan Books, in: Giovanni Barone Adesi (ed.), Simulating Security Returns: A Filtered Historical Simulation Approach, chapter 4, pages 66-108, Palgrave Macmillan.
    24. Taylor, Stephen J. & Yadav, Pradeep K. & Zhang, Yuanyuan, 2010. "The information content of implied volatilities and model-free volatility expectations: Evidence from options written on individual stocks," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 871-881, April.
    25. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    26. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    27. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-681.
    28. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    29. Bakshi, Gurdip & Madan, Dilip, 2000. "Spanning and derivative-security valuation," Journal of Financial Economics, Elsevier, vol. 55(2), pages 205-238, February.
    30. de Vincent-Humphreys, Rupert & Noss, Joseph, 2012. "Estimating probability distributions of future asset prices: empirical transformations from option-implied risk-neutral to real-world density functions," Bank of England working papers 455, Bank of England.
    31. Andrey Itkin, 2005. "Pricing options with VG model using FFT," Papers physics/0503137, arXiv.org, revised Jan 2010.
    32. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(1), pages 91-115, March.
    33. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
    34. Dr. James Mitchell, 2005. "Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR ÔfanÕ charts of inflation," National Institute of Economic and Social Research (NIESR) Discussion Papers 253, National Institute of Economic and Social Research.
    35. Elvira Maria de Sousa Silva & Kandice H. Kahl, 1993. "Reliability of soybean and corn option‐based probability assessments," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(7), pages 765-779, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pauwels, Laurent & Radchenko, Peter & Vasnev, Andrey, 2019. "Higher Moment Constraints for Predictive Density Combinations," Working Papers BAWP-2019-01, University of Sydney Business School, Discipline of Business Analytics.
    2. Pedro Serrano & Antoni Vaello‐Sebastià & M. Magdalena Vich Llompart, 2024. "International evidence of the forecasting ability of option‐implied distributions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1447-1464, August.
    3. Zdeněk Zmeškal & Dana Dluhošová & Karolina Lisztwanová & Antonín Pončík & Iveta Ratmanová, 2023. "Distribution Prediction of Decomposed Relative EVA Measure with Levy-Driven Mean-Reversion Processes: The Case of an Automotive Sector of a Small Open Economy," Forecasting, MDPI, vol. 5(2), pages 1-19, May.
    4. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    5. Ricardo Crisostomo, 2022. "Measuring Transition Risk in Investment Funds," Papers 2210.15329, arXiv.org, revised Dec 2022.
    6. Jaqueline Terra Moura Marins, 2024. "Predictability of Exchange Rate Density Forecasts for Emerging Economies in the Short Run," Working Papers Series 588, Central Bank of Brazil, Research Department.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Andres Trujillo-Barrera & Philip Garcia & Mindy L Mallory, 2018. "Short-term price density forecasts in the lean hog futures market," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 121-142.
    3. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    4. Shackleton, Mark B. & Taylor, Stephen J. & Yu, Peng, 2010. "A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2678-2693, November.
    5. Rui Fan & Stephen J. Taylor & Matteo Sandri, 2018. "Density forecast comparisons for stock prices, obtained from high‐frequency returns and daily option prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(1), pages 83-103, January.
    6. Algieri, Bernardina & Leccadito, Arturo & Tunaru, Diana, 2021. "Risk premia in electricity derivatives markets," Energy Economics, Elsevier, vol. 100(C).
    7. Rompolis, Leonidas S., 2010. "Retrieving risk neutral densities from European option prices based on the principle of maximum entropy," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 918-937, December.
    8. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle in forward looking data," Review of Derivatives Research, Springer, vol. 21(3), pages 253-276, October.
    9. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2018. "Model Complexity and Out-of-Sample Performance: Evidence from S&P 500 Index Returns," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 1-29.
    10. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    11. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    12. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    13. Francisco Alonso & Roberto Blanco & Gonzalo Rubio, 2009. "Option-implied preferences adjustments, density forecasts, and the equity risk premium," Spanish Economic Review, Springer;Spanish Economic Association, vol. 11(2), pages 141-164, June.
    14. Ivanova, Vesela & Puigvert Gutiérrez, Josep Maria, 2014. "Interest rate forecasts, state price densities and risk premium from Euribor options," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 210-223.
    15. Yun, Jaeho, 2014. "Out-of-sample density forecasts with affine jump diffusion models," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 74-87.
    16. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    17. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    18. Ravazzolo Francesco & Vahey Shaun P., 2014. "Forecast densities for economic aggregates from disaggregate ensembles," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(4), pages 367-381, September.
    19. Manzan, Sebastiano & Zerom, Dawit, 2013. "Are macroeconomic variables useful for forecasting the distribution of U.S. inflation?," International Journal of Forecasting, Elsevier, vol. 29(3), pages 469-478.
    20. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.

    More about this item

    Keywords

    Probabilistic forecasts; risk-neutral densities; ARCH models; ensemble predictions; model validation.;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cnv:wpaper:dt_67en. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jose María Moreno (email available below). General contact details of provider: https://edirc.repec.org/data/cnmgves.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.