IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v202y2024ics1364032124003800.html
   My bibliography  Save this article

Progress in battery thermal management systems technologies for electric vehicles

Author

Listed:
  • Gharehghani, Ayat
  • Rabiei, Moeed
  • Mehranfar, Sadegh
  • Saeedipour, Soheil
  • Mahmoudzadeh Andwari, Amin
  • García, Antonio
  • Reche, Carlos Mico

Abstract

Lithium-ion batteries have emerged as a key driver in the commercialization of electric vehicles due to their high energy density, outstanding performance integrated with powertrain systems. Nonetheless, battery performance is greatly influenced by operating temperature which requires precise a thermal management for optimal performance, safety, cost, and longevity especially in high-capacity Li-ion battery. Essentially, investigation of battery thermal management system calls for different aspects of design ranging from configuration and geometry design depending on battery cell and pack layouts to the material selection or development for expected performance and safety level of thermal system. This review formulates heat generation and thermal models in the batteries along with thermal management systems. It explores the effects of abuse conditions in batteries such as thermal runaway and aging. Furthermore, fast charging technologies is discussed in safety design of battery thermal management systems which is rarely studied in similar studies to date. The study also deliberates different types of thermal management system for electric vehicle having Li-ion batteries, such as passive, active, and hybrid models, based on thermal, hydraulic performance and safety. Various heat transfer mediums such as different phase change material types, refrigerant fluid, and combination of them are discussed and categorized based on material characteristic. This review not only collects and reviews the latest battery thermal management system designs, by exploring their future trends and solutions in the performance and safety aspect, but also aims to paves the way for a comprehensive framework in future battery thermal management system research and development.

Suggested Citation

  • Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124003800
    DOI: 10.1016/j.rser.2024.114654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124003800
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124003800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.