IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924019536.html
   My bibliography  Save this article

Effect of cold welding on the inconsistencies and thermal safety of battery modules based on a constructed discharge model

Author

Listed:
  • Mo, Jixiao
  • Zhang, Guoqing
  • Zhang, Jiangyun
  • Mo, Chou
  • Wang, Bo
  • Guo, Shuqing
  • Jiang, Renjun
  • Liu, Jun
  • Peng, Kang

Abstract

The thermal safety of battery systems is a common and key technical problem restricting industrial development. Welding is one of the most important electrical connection methods for lithium-ion battery groups, and the quality of welding directly determines the thermal safety of battery modules. In this research, the inconsistencies and thermal safety of cylindrical lithium-ion battery modules are studied based on cold welding technology. Secondly, the electrochemical characteristics and thermal runaway characteristics of the battery were experimentally studied. Finally, the battery (Table-Based) module launched by the SIMULINK tool of MATLAB software in 2018 was used to build a battery pack model simulating the discharge process to simulate and analyze the battery electrical characteristics. The relevant data show that the temperature difference between the batteries is less than 4 °C and the maximum battery temperature is less than 60 °C when the cold welded module is discharged at a current ratio(C) of 3 high rate, which has good temperature equalization and thermal safety. The output power is higher and the discharge energy increase by 3 % ~ 5 % when the cold-welded module is discharged at different rates. The results for heat abuse conditions show that the overall temperature rise of the cold-welded module is lower, the maximum temperature of the single battery is reduced by 10.7 %, and the maximum temperature rise rate is reduced by 41.2 %. The simulation results show that the current difference between the cells in the hot welding module is large, and there is an obvious overdischarge phenomenon in the late discharge period. The maximum SOC difference between the single battery of the cold-welded module is less than 0.02 when discharging at 3C. The requirements for SOC estimation are met. The above research results confirm that the relevant research will provide new ideas and theoretical value for the research of the consistency improvement of power battery packs, and solve the problem of the electrical/thermal balance difference of the existing resistance thermal welding process from another dimension based on the cold welding strategy.

Suggested Citation

  • Mo, Jixiao & Zhang, Guoqing & Zhang, Jiangyun & Mo, Chou & Wang, Bo & Guo, Shuqing & Jiang, Renjun & Liu, Jun & Peng, Kang, 2025. "Effect of cold welding on the inconsistencies and thermal safety of battery modules based on a constructed discharge model," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019536
    DOI: 10.1016/j.apenergy.2024.124570
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924019536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124570?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Limei & Cheng, Yong & Zhao, Xiuliang, 2015. "A LiFePO4 battery pack capacity estimation approach considering in-parallel cell safety in electric vehicles," Applied Energy, Elsevier, vol. 142(C), pages 293-302.
    2. Zuo, Hongyan & Zhang, Bin & Huang, Zhonghua & Wei, Kexiang & Zhu, Hong & Tan, Jiqiu, 2022. "Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation," Energy, Elsevier, vol. 238(PB).
    3. Chuan-Wei Zhang & Ke-Jun Xu & Lin-Yang Li & Man-Zhi Yang & Huai-Bin Gao & Shang-Rui Chen, 2018. "Study on a Battery Thermal Management System Based on a Thermoelectric Effect," Energies, MDPI, vol. 11(2), pages 1-15, January.
    4. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    5. Wang, Limei & Cheng, Yong & Zhao, Xiuliang, 2015. "Influence of connecting plate resistance upon LiFePO4 battery performance," Applied Energy, Elsevier, vol. 147(C), pages 353-360.
    6. Wassiliadis, Nikolaos & Ank, Manuel & Wildfeuer, Leo & Kick, Michael K. & Lienkamp, Markus, 2021. "Experimental investigation of the influence of electrical contact resistance on lithium-ion battery testing for fast-charge applications," Applied Energy, Elsevier, vol. 295(C).
    7. Zhang, Caiping & Jiang, Yan & Jiang, Jiuchun & Cheng, Gong & Diao, Weiping & Zhang, Weige, 2017. "Study on battery pack consistency evolutions and equilibrium diagnosis for serial- connected lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 510-519.
    8. Chuanwei Zhang & Zhan Xia & Bin Wang & Huaibin Gao & Shangrui Chen & Shouchao Zong & Kunxin Luo, 2020. "A Li-Ion Battery Thermal Management System Combining a Heat Pipe and Thermoelectric Cooler," Energies, MDPI, vol. 13(4), pages 1-15, February.
    9. An, Fulai & Zhang, Weige & Sun, Bingxiang & Jiang, Jiuchun & Fan, Xinyuan, 2023. "A novel battery pack inconsistency model and influence degree analysis of inconsistency on output energy," Energy, Elsevier, vol. 271(C).
    10. Liu, Xinhua & Ai, Weilong & Naylor Marlow, Max & Patel, Yatish & Wu, Billy, 2019. "The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs," Applied Energy, Elsevier, vol. 248(C), pages 489-499.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Haosen & Fan, Jinbao & Zhang, Mingliang & Feng, Xiaolong & Zhong, Ximing & He, Jianchao & Ai, Shigang, 2023. "Mechanism of inhomogeneous deformation and equal-stiffness design of large-format prismatic lithium-ion batteries," Applied Energy, Elsevier, vol. 332(C).
    2. Liu, Xinhua & Ai, Weilong & Naylor Marlow, Max & Patel, Yatish & Wu, Billy, 2019. "The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs," Applied Energy, Elsevier, vol. 248(C), pages 489-499.
    3. He, Xitian & Sun, Bingxiang & Zhang, Weige & Su, Xiaojia & Ma, Shichang & Li, Hao & Ruan, Haijun, 2023. "Inconsistency modeling of lithium-ion battery pack based on variational auto-encoder considering multi-parameter correlation," Energy, Elsevier, vol. 277(C).
    4. Hua Zhang & Lei Pei & Jinlei Sun & Kai Song & Rengui Lu & Yongping Zhao & Chunbo Zhu & Tiansi Wang, 2016. "Online Diagnosis for the Capacity Fade Fault of a Parallel-Connected Lithium Ion Battery Group," Energies, MDPI, vol. 9(5), pages 1, May.
    5. Wang, Shunli & Shang, Liping & Li, Zhanfeng & Deng, Hu & Li, Jianchao, 2016. "Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation," Applied Energy, Elsevier, vol. 166(C), pages 44-58.
    6. Tian, Jiaqiang & Fan, Yuan & Pan, Tianhong & Zhang, Xu & Yin, Jianning & Zhang, Qingping, 2024. "A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Li, Changlong & Cui, Naxin & Chang, Long & Cui, Zhongrui & Yuan, Haitao & Zhang, Chenghui, 2022. "Effect of parallel connection topology on air-cooled lithium-ion battery module: Inconsistency analysis and comprehensive evaluation," Applied Energy, Elsevier, vol. 313(C).
    8. Wang, Shumao & Bao, Wenkang & Sun, Yuedong & Li, Xiangjun & Dai, Feng & Hua, Jianfeng & Zheng, Yuejiu, 2024. "Current sensorless diagnosis of the cell internal resistance consistency in a parallel module using relaxation voltage," Energy, Elsevier, vol. 301(C).
    9. Bingxiang Sun & Xinze Zhao & Xitian He & Haijun Ruan & Zhenlin Zhu & Xingzhen Zhou, 2023. "Virtual Battery Pack-Based Battery Management System Testing Framework," Energies, MDPI, vol. 16(2), pages 1-21, January.
    10. Thomas Imre Cyrille Buidin & Florin Mariasiu, 2021. "Battery Thermal Management Systems: Current Status and Design Approach of Cooling Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    11. E, Jiaqiang & Qin, Yisheng & Zhang, Bin & Yin, Huichun & Tan, Yan, 2023. "Effects of heating film and phase change material on preheating performance of the lithium-ion battery pack with large capacity under low temperature environment," Energy, Elsevier, vol. 284(C).
    12. Wang, Limei & Pan, Chaofeng & Liu, Liang & Cheng, Yong & Zhao, Xiuliang, 2016. "On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis," Applied Energy, Elsevier, vol. 168(C), pages 465-472.
    13. Ravi Anant Kishore & Roop L. Mahajan & Shashank Priya, 2018. "Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator," Energies, MDPI, vol. 11(9), pages 1-17, August.
    14. Chang, Chun & Wu, Yutong & Jiang, Jiuchun & Jiang, Yan & Tian, Aina & Li, Taiyu & Gao, Yang, 2022. "Prognostics of the state of health for lithium-ion battery packs in energy storage applications," Energy, Elsevier, vol. 239(PB).
    15. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    16. Dawei Song & Shiqian Wang & Li Di & Weijian Zhang & Qian Wang & Jing V. Wang, 2023. "Lithium-Ion Battery Life Prediction Method under Thermal Gradient Conditions," Energies, MDPI, vol. 16(2), pages 1-13, January.
    17. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    18. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    19. Liu, Yongjie & Huang, Zhiwu & Wu, Yue & Yan, Lisen & Jiang, Fu & Peng, Jun, 2022. "An online hybrid estimation method for core temperature of Lithium-ion battery with model noise compensation," Applied Energy, Elsevier, vol. 327(C).
    20. Qin, Yudi & Du, Jiuyu & Lu, Languang & Gao, Ming & Haase, Frank & Li, Jianqiu & Ouyang, Minggao, 2020. "A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life," Applied Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.