IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v240y2022ics0360544221030036.html
   My bibliography  Save this article

Heat pipe/phase change material thermal management of Li-ion power battery packs: A numerical study on coupled heat transfer performance

Author

Listed:
  • Leng, Ziyu
  • Yuan, Yanping
  • Cao, Xiaoling
  • Zeng, Chao
  • Zhong, Wei
  • Gao, Bo

Abstract

To improve the thermal management performance of Li-ion power battery packs, this paper investigates HP/PCM (heat pipe/phase change material) coupled thermal management (TM). The significant purposes are to reveal internal coupled heat transfer mechanism, and propose a critical application range of coupled TM. To achieve this goal, lumped parameter method and finite difference method are adopted to build the mathematical modelling. Based on the simulation, the superiority of temperature control in coupled TM can be confirmed, and its internal heat flux distribution is calculated to reveal the principle of temperature control effects. Further parametric study is carried out to analyze their variation trend over different working conditions, whereupon both coupled heat transfer mechanism and critical application range are obtained. Results demonstrate that coupled TM achieves lower battery surface temperature and longer control time compared with single HP and PCM TM, respectively. It also shows that internal coupled heat flux distribution transits from PCM-dominated to HP-dominated, and ultimately almost depends on HP. Furthermore, based on the data of parametric study, coupled TM plays superiority when h < 12 W/m2∙K and 0.1 W/(m∙K) < kPCM ≤ 5 W/(m∙K) under the external condition of this study.

Suggested Citation

  • Leng, Ziyu & Yuan, Yanping & Cao, Xiaoling & Zeng, Chao & Zhong, Wei & Gao, Bo, 2022. "Heat pipe/phase change material thermal management of Li-ion power battery packs: A numerical study on coupled heat transfer performance," Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030036
    DOI: 10.1016/j.energy.2021.122754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221030036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Xianrong & Duan, Xiting & Jiang, Wenjuan & Wang, Yan & Zou, Youlan & Lei, Weixin & Sun, Lizhong & Ma, Zengsheng, 2021. "Structural design of a composite board/heat pipe based on the coupled electro-chemical-thermal model in battery thermal management system," Energy, Elsevier, vol. 216(C).
    2. Zhang, Chunwei & Yu, Meng & Fan, Yubin & Zhang, Xuejun & Zhao, Yang & Qiu, Limin, 2020. "Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe," Energy, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Tingting & Wang, Changhong & Hu, Yanxin & Liang, Zhixuan & Fan, Changxiang, 2023. "Research on electrochemical characteristics and heat generating properties of power battery based on multi-time scales," Energy, Elsevier, vol. 265(C).
    2. Luo, Jie & Gu, Heng & Wang, Shuo & Wang, Hao & Zou, Deqiu, 2022. "A coupled power battery cooling system based on phase change material and its influencing factors," Applied Energy, Elsevier, vol. 326(C).
    3. Qin, Siyu & Ji, Ruiyang & Miao, Chengyu & Jin, Liwen & Yang, Chun & Meng, Xiangzhao, 2024. "Review of enhancing boiling and condensation heat transfer: Surface modification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Faizan, Md & Pati, Sukumar & Randive, Pitambar, 2023. "Effect of channel configurations on the thermal management of fast discharging Li-ion battery module with hybrid cooling," Energy, Elsevier, vol. 267(C).
    5. Bogdan Diaconu & Mihai Cruceru & Lucica Anghelescu & Cristinel Racoceanu & Cristinel Popescu & Marian Ionescu & Adriana Tudorache, 2023. "Latent Heat Storage Systems for Thermal Management of Electric Vehicle Batteries: Thermal Performance Enhancement and Modulation of the Phase Transition Process Dynamics: A Literature Review," Energies, MDPI, vol. 16(6), pages 1-46, March.
    6. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Mengda & Zhang, Tao & Liu, Yajie & Zhang, Yajun & Wang, Yu & Li, Kaiwen, 2022. "An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator," Energy, Elsevier, vol. 257(C).
    2. Zhang, Chenyu & Wang, Ning & Yang, Qiguo & Xu, Hongtao & Qu, Zhiguo & Fang, Yuan, 2022. "Energy and exergy analysis of a switchable solar photovoltaic/thermal-phase change material system with thermal regulation strategies," Renewable Energy, Elsevier, vol. 196(C), pages 1392-1405.
    3. Gang Liu & Yuanji Li & Pan Wei & Tian Xiao & Xiangzhao Meng & Xiaohu Yang, 2022. "Thermo-Economic Assessments on a Heat Storage Tank Filled with Graded Metal Foam," Energies, MDPI, vol. 15(19), pages 1-16, September.
    4. Tian, Shen & Yang, Qifan & Hui, Na & Bai, Haozhi & Shao, Shuangquan & Liu, Shengchun, 2020. "Discharging process and performance of a portable cold thermal energy storage panel driven by embedded heat pipes," Energy, Elsevier, vol. 205(C).
    5. Kiran Vaddi & Olga Wodo, 2022. "Active Knowledge Extraction from Cyclic Voltammetry," Energies, MDPI, vol. 15(13), pages 1-13, June.
    6. Mehdi Ghalambaz & Hani Abulkhair & Obai Younis & Mehdi Fteiti & Ali J. Chamkha & Iqbal Ahmed Moujdin & Abdulmohsen Omar Alsaiari, 2022. "Low-Temperature Industrial Waste Heat (IWH) Recovery Using a New Design for Fast-Charging Thermal Energy Storage Units," Mathematics, MDPI, vol. 11(1), pages 1-19, December.
    7. Chen, Xue & Li, Xiaolei & Xia, Xinlin & Sun, Chuang & Liu, Rongqiang, 2021. "Thermal storage analysis of a foam-filled PCM heat exchanger subjected to fluctuating flow conditions," Energy, Elsevier, vol. 216(C).
    8. Guo, Chao & Liu, Huan-ling & Guo, Qi & Shao, Xiao-dong & Zhu, Ming-liang, 2022. "Investigations on a novel cold plate achieved by topology optimization for lithium-ion batteries," Energy, Elsevier, vol. 261(PA).
    9. Jiabin Duan & Jiapei Zhao & Xinke Li & Satyam Panchal & Jinliang Yuan & Roydon Fraser & Michael Fowler, 2021. "Modeling and Analysis of Heat Dissipation for Liquid Cooling Lithium-Ion Batteries," Energies, MDPI, vol. 14(14), pages 1-19, July.
    10. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ma, Binjian, 2023. "A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management," Energy, Elsevier, vol. 263(PE).
    11. Jana Shafi & Mikhail Sheremet & Mehdi Fteiti & Abdulkafi Mohammed Saeed & Mohammad Ghalambaz, 2023. "Computational Study of Phase Change Heat Transfer and Latent Heat Energy Storage for Thermal Management of Electronic Components Using Neural Networks," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    12. Kong, Xiangfei & Zhang, Lanlan & Li, Han & Wang, Yongzhen & Fan, Man, 2022. "Effect of solar energy concentrating and phase change cooling on energy and exergy performance improvement of photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 197(C), pages 1251-1263.
    13. Zhao, B.C. & Wang, R.Z., 2020. "A novel 3-D model of an industrial-scale tube-fin latent heat storage using salt hydrates with supercooling: A model validation," Energy, Elsevier, vol. 213(C).
    14. Xingxing Wang & Shengren Liu & Yujie Zhang & Shuaishuai Lv & Hongjun Ni & Yelin Deng & Yinnan Yuan, 2022. "A Review of the Power Battery Thermal Management System with Different Cooling, Heating and Coupling System," Energies, MDPI, vol. 15(6), pages 1-29, March.
    15. Fan, Yubin & Zhang, Chunwei & Jiang, Long & Zhang, Xuejun & Qiu, Limin, 2022. "Exploration on two-stage latent thermal energy storage for heat recovery in cryogenic air separation purification system," Energy, Elsevier, vol. 239(PB).
    16. Lu, Xin & Chen, Ning & Li, Hui & Guo, Shiyu & Chen, Zengtao, 2023. "Simulation of the temperature distribution of lithium-ion battery module considering the time-delay effect of the porous electrodes," Energy, Elsevier, vol. 284(C).
    17. Saikia, Pranaynil & Bastida, Héctor & Ugalde-Loo, Carlos E., 2024. "An effective predictor of the dynamic operation of latent heat thermal energy storage units based on a non-linear autoregressive network with exogenous inputs," Applied Energy, Elsevier, vol. 360(C).
    18. Hashem Zadeh, Seyed Mohsen & Mehryan, S.A.M. & Ghalambaz, Mohammad & Ghodrat, Maryam & Young, John & Chamkha, Ali, 2020. "Hybrid thermal performance enhancement of a circular latent heat storage system by utilizing partially filled copper foam and Cu/GO nano-additives," Energy, Elsevier, vol. 213(C).
    19. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    20. Wołoszyn, Jerzy & Szopa, Krystian, 2023. "A combined heat transfer enhancement technique for shell-and-tube latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 202(C), pages 1342-1356.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.