IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p841-d320782.html
   My bibliography  Save this article

A Li-Ion Battery Thermal Management System Combining a Heat Pipe and Thermoelectric Cooler

Author

Listed:
  • Chuanwei Zhang

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Zhan Xia

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Bin Wang

    (College of Engineering, Design and Physical Sciences, Brunel University, London UB8 3PH, UK)

  • Huaibin Gao

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Shangrui Chen

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Shouchao Zong

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Kunxin Luo

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

Abstract

The temperature of electric vehicle batteries needs to be controlled through a thermal management system to ensure working performance, service life, and safety. In this paper, TAFEL-LAE895 100Ah ternary Li-ion batteries were used, and discharging experiments at different rates were conducted to study the surface temperature increasing characteristics of the battery. To dissipate heat, heat pipes with high thermal conductivity were used to accelerate dissipating heat on the surface of the battery. We found that the heat pipe was sufficient to keep the battery temperature within the desired range with a midlevel discharge rate. For further improvement, an additional thermoelectric cooler was needed for a high discharge rate. Simulations were completed with a battery management system based on a heat pipe and with a combined heat pipe and thermoelectric cooler, and the results were in line with the experimental results. The findings show that the combined system can effectively reduce the surface temperature of a battery within the full range of discharge rates expected in the battery used.

Suggested Citation

  • Chuanwei Zhang & Zhan Xia & Bin Wang & Huaibin Gao & Shangrui Chen & Shouchao Zong & Kunxin Luo, 2020. "A Li-Ion Battery Thermal Management System Combining a Heat Pipe and Thermoelectric Cooler," Energies, MDPI, vol. 13(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:841-:d:320782
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/841/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/841/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jiangqiu & He, Xiangming, 2016. "A 3D thermal runaway propagation model for a large format lithium ion battery module," Energy, Elsevier, vol. 115(P1), pages 194-208.
    2. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    3. Chuan-Wei Zhang & Shang-Rui Chen & Huai-Bin Gao & Ke-Jun Xu & Zhan Xia & Shuai-Tian Li, 2019. "Study of Thermal Management System Using Composite Phase Change Materials and Thermoelectric Cooling Sheet for Power Battery Pack," Energies, MDPI, vol. 12(10), pages 1-14, May.
    4. Rao, Zhonghao & Wang, Qingchao & Huang, Congliang, 2016. "Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system," Applied Energy, Elsevier, vol. 164(C), pages 659-669.
    5. Wu, Weixiong & Yang, Xiaoqing & Zhang, Guoqing & Ke, Xiufang & Wang, Ziyuan & Situ, Wenfu & Li, Xinxi & Zhang, Jiangyun, 2016. "An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack," Energy, Elsevier, vol. 113(C), pages 909-916.
    6. Daniel Worwood & James Marco & Quirin Kellner & Elham Hosseinzadeh & Ryan McGlen & David Mullen & Kevin Lynn & David Greenwood, 2019. "Experimental Analysis of a Novel Cooling Material for Large Format Automotive Lithium-Ion Cells," Energies, MDPI, vol. 12(7), pages 1-32, April.
    7. Shasha Deng & Kuining Li & Yi Xie & Cunxue Wu & Pingzhong Wang & Miao Yu & Bo Li & Jintao Zheng, 2019. "Heat Pipe Thermal Management Based on High-Rate Discharge and Pulse Cycle Tests for Lithium-Ion Batteries," Energies, MDPI, vol. 12(16), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Li & Shusheng Xiong & Xiaojun Zhou & Wei Shi & Chongming Wang & Xianke Lin & Junjie Cheng, 2021. "Design of Cylindrical Thermal Dummy Cell for Development of Lithium-Ion Battery Thermal Management System," Energies, MDPI, vol. 14(5), pages 1-16, March.
    2. Zhang, Xinghui & Li, Zhao & Luo, Lingai & Fan, Yilin & Du, Zhengyu, 2022. "A review on thermal management of lithium-ion batteries for electric vehicles," Energy, Elsevier, vol. 238(PA).
    3. Al-Nimr, Moh'd & Haddad, Osamah & Al-Samamah, Lena, 2023. "The feasibility of using magnetic refrigeration cycles in the thermal management of rechargeable batteries in electric cars," Energy, Elsevier, vol. 283(C).
    4. Ivan CK Tam & Brian Agnew, 2020. "Thermal Systems—An Overview," Energies, MDPI, vol. 14(1), pages 1-3, December.
    5. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    6. Thomas Imre Cyrille Buidin & Florin Mariasiu, 2021. "Battery Thermal Management Systems: Current Status and Design Approach of Cooling Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuanwei Zhang & Zhan Xia & Huaibin Gao & Jianping Wen & Shangrui Chen & Meng Dang & Sujing Gu & Jianing Zhang, 2020. "A Coolant Circulation Cooling System Combining Aluminum Plates and Copper Rods for Li-Ion Battery Pack," Energies, MDPI, vol. 13(17), pages 1-14, August.
    2. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Situ, Wenfu & Zhang, Guoqing & Li, Xinxi & Yang, Xiaoqing & Wei, Chao & Rao, Mumin & Wang, Ziyuan & Wang, Cong & Wu, Weixiong, 2017. "A thermal management system for rectangular LiFePO4 battery module using novel double copper mesh-enhanced phase change material plates," Energy, Elsevier, vol. 141(C), pages 613-623.
    5. Chuan-Wei Zhang & Shang-Rui Chen & Huai-Bin Gao & Ke-Jun Xu & Zhan Xia & Shuai-Tian Li, 2019. "Study of Thermal Management System Using Composite Phase Change Materials and Thermoelectric Cooling Sheet for Power Battery Pack," Energies, MDPI, vol. 12(10), pages 1-14, May.
    6. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    9. Kittinan Boonma & Napol Patimaporntap & Hussein Mbulu & Piyatida Trinuruk & Kitchanon Ruangjirakit & Yossapong Laoonual & Somchai Wongwises, 2022. "A Review of the Parameters Affecting a Heat Pipe Thermal Management System for Lithium-Ion Batteries," Energies, MDPI, vol. 15(22), pages 1-16, November.
    10. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    11. Ruifeng Zhang & Bizhong Xia & Baohua Li & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2018. "Study on the Characteristics of a High Capacity Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion Battery—An Experimental Investigation," Energies, MDPI, vol. 11(9), pages 1-20, August.
    12. Akula, Rajesh & Balaji, C., 2022. "Thermal management of 18650 Li-ion battery using novel fins–PCM–EG composite heat sinks," Applied Energy, Elsevier, vol. 316(C).
    13. Ardani, M.I. & Patel, Y. & Siddiq, A. & Offer, G.J. & Martinez-Botas, R.F., 2018. "Combined experimental and numerical evaluation of the differences between convective and conductive thermal control on the performance of a lithium ion cell," Energy, Elsevier, vol. 144(C), pages 81-97.
    14. Shen, Zu-Guo & Chen, Shuai & Liu, Xun & Chen, Ben, 2021. "A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Cao, Jiahao & Luo, Mingyun & Fang, Xiaoming & Ling, Ziye & Zhang, Zhengguo, 2020. "Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study," Energy, Elsevier, vol. 191(C).
    16. Chunyu Zhao & Beile Zhang & Yuanming Zheng & Shunyuan Huang & Tongtong Yan & Xiufang Liu, 2020. "Hybrid Battery Thermal Management System in Electrical Vehicles: A Review," Energies, MDPI, vol. 13(23), pages 1-18, November.
    17. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    18. Ren, Hongbin & Zhao, Yuzhuang & Chen, Sizhong & Wang, Taipeng, 2019. "Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation," Energy, Elsevier, vol. 166(C), pages 908-917.
    19. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    20. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:841-:d:320782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.