IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v134y2014icp229-238.html
   My bibliography  Save this article

Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies

Author

Listed:
  • Wang, Tao
  • Tseng, K.J.
  • Zhao, Jiyun
  • Wei, Zhongbao

Abstract

Thermal management needs to be carefully considered in the lithium-ion battery module design to guarantee the temperature of batteries in operation within a narrow optimal range. This article firstly explores the thermal performance of battery module under different cell arrangement structures, which includes: 1×24, 3×8 and 5×5 arrays rectangular arrangement, 19 cells hexagonal arrangement and 28 cells circular arrangement. In addition, air-cooling strategies are also investigated by installing the fans in the different locations of the battery module to improve the temperature uniformity. Factors that influence the cooling capability of forced air cooling are discussed based on the simulations. The three-dimensional computational fluid dynamics (CFD) method and lumped model of single cell have been applied in the simulation. The temperature distributions of batteries are quantitatively described based on different module patterns, fan locations as well as inter-cell distance, and the conclusions are arrived as follows: when the fan locates on top of the module, the best cooling performance is achieved; the most desired structure with forced air cooling is cubic arrangement concerning the cooling effect and cost, while hexagonal structure is optimal when focus on the space utilization of battery module. Besides, the optimized inter-cell distance in battery module structure has been recommended.

Suggested Citation

  • Wang, Tao & Tseng, K.J. & Zhao, Jiyun & Wei, Zhongbao, 2014. "Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies," Applied Energy, Elsevier, vol. 134(C), pages 229-238.
  • Handle: RePEc:eee:appene:v:134:y:2014:i:c:p:229-238
    DOI: 10.1016/j.apenergy.2014.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914008162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Waag, Wladislaw & Sauer, Dirk Uwe, 2013. "Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination," Applied Energy, Elsevier, vol. 111(C), pages 416-427.
    2. Ping, Ping & Wang, Qingsong & Huang, Peifeng & Sun, Jinhua & Chen, Chunhua, 2014. "Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method," Applied Energy, Elsevier, vol. 129(C), pages 261-273.
    3. Hu, Chao & Jain, Gaurav & Zhang, Puqiang & Schmidt, Craig & Gomadam, Parthasarathy & Gorka, Tom, 2014. "Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery," Applied Energy, Elsevier, vol. 129(C), pages 49-55.
    4. Xiong, Rui & Sun, Fengchun & Gong, Xianzhi & Gao, Chenchen, 2014. "A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 1421-1433.
    5. Ling, Ziye & Chen, Jiajie & Fang, Xiaoming & Zhang, Zhengguo & Xu, Tao & Gao, Xuenong & Wang, Shuangfeng, 2014. "Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system," Applied Energy, Elsevier, vol. 121(C), pages 104-113.
    6. Ng, Selina S.Y. & Xing, Yinjiao & Tsui, Kwok L., 2014. "A naive Bayes model for robust remaining useful life prediction of lithium-ion battery," Applied Energy, Elsevier, vol. 118(C), pages 114-123.
    7. Sun, Fengchun & Xiong, Rui & He, Hongwen & Li, Weiqing & Aussems, Johan Eric Emmanuel, 2012. "Model-based dynamic multi-parameter method for peak power estimation of lithium–ion batteries," Applied Energy, Elsevier, vol. 96(C), pages 378-386.
    8. Xue, Nansi & Du, Wenbo & Greszler, Thomas A. & Shyy, Wei & Martins, Joaquim R.R.A., 2014. "Design of a lithium-ion battery pack for PHEV using a hybrid optimization method," Applied Energy, Elsevier, vol. 115(C), pages 591-602.
    9. Xu, X.M. & He, R., 2014. "Review on the heat dissipation performance of battery pack with different structures and operation conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 301-315.
    10. Omar, Noshin & Monem, Mohamed Abdel & Firouz, Yousef & Salminen, Justin & Smekens, Jelle & Hegazy, Omar & Gaulous, Hamid & Mulder, Grietus & Van den Bossche, Peter & Coosemans, Thierry & Van Mierlo, J, 2014. "Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model," Applied Energy, Elsevier, vol. 113(C), pages 1575-1585.
    11. Tan, Hongbo & Li, Yanzhong & Tuo, Hanfei & Zhou, Man & Tian, Baocong, 2010. "Experimental study on liquid/solid phase change for cold energy storage of Liquefied Natural Gas (LNG) refrigerated vehicle," Energy, Elsevier, vol. 35(5), pages 1927-1935.
    12. Miranda, Á.G. & Hong, C.W., 2013. "Integrated modeling for the cyclic behavior of high power Li-ion batteries under extended operating conditions," Applied Energy, Elsevier, vol. 111(C), pages 681-689.
    13. Liu, Xingtao & Chen, Zonghai & Zhang, Chenbin & Wu, Ji, 2014. "A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation," Applied Energy, Elsevier, vol. 123(C), pages 263-272.
    14. Hu, Chao & Youn, Byeng D. & Chung, Jaesik, 2012. "A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation," Applied Energy, Elsevier, vol. 92(C), pages 694-704.
    15. Jhu, Can-Yong & Wang, Yih-Wen & Wen, Chia-Yuan & Shu, Chi-Min, 2012. "Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology," Applied Energy, Elsevier, vol. 100(C), pages 127-131.
    16. Rao, Zhonghao & Wang, Shuangfeng, 2011. "A review of power battery thermal energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4554-4571.
    17. Xiong, Rui & Sun, Fengchun & Chen, Zheng & He, Hongwen, 2014. "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 463-476.
    18. Jin, L.W. & Lee, P.S. & Kong, X.X. & Fan, Y. & Chou, S.K., 2014. "Ultra-thin minichannel LCP for EV battery thermal management," Applied Energy, Elsevier, vol. 113(C), pages 1786-1794.
    19. Xing, Yinjiao & He, Wei & Pecht, Michael & Tsui, Kwok Leung, 2014. "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures," Applied Energy, Elsevier, vol. 113(C), pages 106-115.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    2. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    3. Saw, L.H. & Ye, Y. & Tay, A.A.O., 2014. "Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles," Applied Energy, Elsevier, vol. 131(C), pages 97-107.
    4. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    5. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy," Applied Energy, Elsevier, vol. 137(C), pages 427-434.
    6. Avvari, G.V. & Pattipati, B. & Balasingam, B. & Pattipati, K.R. & Bar-Shalom, Y., 2015. "Experimental set-up and procedures to test and validate battery fuel gauge algorithms," Applied Energy, Elsevier, vol. 160(C), pages 404-418.
    7. Bai, Guangxing & Wang, Pingfeng & Hu, Chao & Pecht, Michael, 2014. "A generic model-free approach for lithium-ion battery health management," Applied Energy, Elsevier, vol. 135(C), pages 247-260.
    8. Patil, Meru A. & Tagade, Piyush & Hariharan, Krishnan S. & Kolake, Subramanya M. & Song, Taewon & Yeo, Taejung & Doo, Seokgwang, 2015. "A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation," Applied Energy, Elsevier, vol. 159(C), pages 285-297.
    9. Abdel Monem, Mohamed & Trad, Khiem & Omar, Noshin & Hegazy, Omar & Mantels, Bart & Mulder, Grietus & Van den Bossche, Peter & Van Mierlo, Joeri, 2015. "Lithium-ion batteries: Evaluation study of different charging methodologies based on aging process," Applied Energy, Elsevier, vol. 152(C), pages 143-155.
    10. Xiangyu Cui & Zhu Jing & Maji Luo & Yazhou Guo & Huimin Qiao, 2018. "A New Method for State of Charge Estimation of Lithium-Ion Batteries Using Square Root Cubature Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-21, January.
    11. Li, Shi & Pischinger, Stefan & He, Chaoyi & Liang, Liliuyuan & Stapelbroek, Michael, 2018. "A comparative study of model-based capacity estimation algorithms in dual estimation frameworks for lithium-ion batteries under an accelerated aging test," Applied Energy, Elsevier, vol. 212(C), pages 1522-1536.
    12. Hu, Chao & Jain, Gaurav & Tamirisa, Prabhakar & Gorka, Tom, 2014. "Method for estimating capacity and predicting remaining useful life of lithium-ion battery," Applied Energy, Elsevier, vol. 126(C), pages 182-189.
    13. Hu, Chao & Jain, Gaurav & Zhang, Puqiang & Schmidt, Craig & Gomadam, Parthasarathy & Gorka, Tom, 2014. "Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery," Applied Energy, Elsevier, vol. 129(C), pages 49-55.
    14. Feng, Xuning & Weng, Caihao & Ouyang, Minggao & Sun, Jing, 2016. "Online internal short circuit detection for a large format lithium ion battery," Applied Energy, Elsevier, vol. 161(C), pages 168-180.
    15. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Shifei Yuan & Hongjie Wu & Xuerui Ma & Chengliang Yin, 2015. "Stability Analysis for Li-Ion Battery Model Parameters and State of Charge Estimation by Measurement Uncertainty Consideration," Energies, MDPI, vol. 8(8), pages 1-23, July.
    17. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2017. "On-line battery state-of-charge estimation based on an integrated estimator," Applied Energy, Elsevier, vol. 185(P2), pages 2026-2032.
    18. Truchot, Cyril & Dubarry, Matthieu & Liaw, Bor Yann, 2014. "State-of-charge estimation and uncertainty for lithium-ion battery strings," Applied Energy, Elsevier, vol. 119(C), pages 218-227.
    19. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    20. Wang, Limei & Pan, Chaofeng & Liu, Liang & Cheng, Yong & Zhao, Xiuliang, 2016. "On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis," Applied Energy, Elsevier, vol. 168(C), pages 465-472.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:134:y:2014:i:c:p:229-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.