IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v235y2021ics0360544221016819.html
   My bibliography  Save this article

Inclined U-shaped flat microheat pipe array configuration for cooling and heating lithium-ion battery modules in electric vehicles

Author

Listed:
  • Liang, Lin
  • Zhao, Yaohua
  • Diao, Yanhua
  • Ren, Ruyang
  • Jing, Heran

Abstract

The battery thermal management system (BTMS) is important to ensure the lithium-ion battery life, performance, and safety. A novel inclined U-shaped flat microheat pipe array (FMHPA) is used for BTMS to achieve high efficiency and space-saving in this study. The thermal control performance is experimentally studied and compared with the module without FMHPAs. Results show that the equivalent thermal conductivity of the inclined U-shaped FMHPA is approximately 4350 W m−1 K−1, and plays the role of core heat transfer element. The maximum temperature and temperature difference of the module with FMHPAs are reduced by 16% and 60%, respectively, compared with those of the module without FMHPAs; FMHPAs keep the module in a suitable temperature range for most of the time in the ambient temperature of 25 °C during the 1C charge–2C discharge cycle. Moreover, the temperature difference at cell and module level are maintained within 5 °C in ambient temperature of 25 °C and 40 °C. The heating rate of the module with FMHPAs reaches 0.61 °C/min under the temperature difference of less than 5 °C; variable power heating (from large to small) will increase the temperature rise rate of the battery by 0.19 °C/min.

Suggested Citation

  • Liang, Lin & Zhao, Yaohua & Diao, Yanhua & Ren, Ruyang & Jing, Heran, 2021. "Inclined U-shaped flat microheat pipe array configuration for cooling and heating lithium-ion battery modules in electric vehicles," Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016819
    DOI: 10.1016/j.energy.2021.121433
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221016819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121433?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diao, Y.H. & Liang, L. & Zhao, Y.H. & Wang, Z.Y. & Bai, F.W., 2019. "Numerical investigation of the thermal performance enhancement of latent heat thermal energy storage using longitudinal rectangular fins and flat micro-heat pipe arrays," Applied Energy, Elsevier, vol. 233, pages 894-905.
    2. Jilte, Ravindra & Afzal, Asif & Panchal, Satyam, 2021. "A novel battery thermal management system using nano-enhanced phase change materials," Energy, Elsevier, vol. 219(C).
    3. Jiang, Z.Y. & Qu, Z.G. & Zhang, J.F. & Rao, Z.H., 2020. "Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy," Applied Energy, Elsevier, vol. 268(C).
    4. Yetik, Ozge & Karakoc, Tahir Hikmet, 2020. "A numerical study on the thermal performance of prismatic li-ion batteries for hibrid electric aircraft," Energy, Elsevier, vol. 195(C).
    5. Omar, Noshin & Monem, Mohamed Abdel & Firouz, Yousef & Salminen, Justin & Smekens, Jelle & Hegazy, Omar & Gaulous, Hamid & Mulder, Grietus & Van den Bossche, Peter & Coosemans, Thierry & Van Mierlo, J, 2014. "Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model," Applied Energy, Elsevier, vol. 113(C), pages 1575-1585.
    6. Bai, Fanfei & Chen, Mingbiao & Song, Wenji & Yu, Qinghua & Li, Yongliang & Feng, Ziping & Ding, Yulong, 2019. "Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate," Energy, Elsevier, vol. 167(C), pages 561-574.
    7. Ling, Ziye & Wang, Fangxian & Fang, Xiaoming & Gao, Xuenong & Zhang, Zhengguo, 2015. "A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling," Applied Energy, Elsevier, vol. 148(C), pages 403-409.
    8. Liang, Jialin & Gan, Yunhua & Tan, Meixian & Li, Yong, 2020. "Multilayer electrochemical-thermal coupled modeling of unbalanced discharging in a serially connected lithium-ion battery module," Energy, Elsevier, vol. 209(C).
    9. Huang, Peifeng & Yao, Caixia & Mao, Binbin & Wang, Qingsong & Sun, Jinhua & Bai, Zhonghao, 2020. "The critical characteristics and transition process of lithium-ion battery thermal runaway," Energy, Elsevier, vol. 213(C).
    10. Liang, L. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Bai, F.W., 2020. "Numerical and experimental investigations of latent thermal energy storage device based on a flat micro-heat pipe array–metal foam composite structure," Renewable Energy, Elsevier, vol. 161(C), pages 1195-1208.
    11. Liang, Jialin & Gan, Yunhua & Li, Yong & Tan, Meixian & Wang, Jianqin, 2019. "Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures," Energy, Elsevier, vol. 189(C).
    12. Menale, Carla & D'Annibale, Francesco & Mazzarotta, Barbara & Bubbico, Roberto, 2019. "Thermal management of lithium-ion batteries: An experimental investigation," Energy, Elsevier, vol. 182(C), pages 57-71.
    13. Jaguemont, J. & Boulon, L. & Dubé, Y., 2016. "A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures," Applied Energy, Elsevier, vol. 164(C), pages 99-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruheng Lin & Jiekai Xie & Rui Liang & Xinxi Li & Guoqing Zhang & Binbin Li, 2022. "Experiments and Simulation on the Performance of a Liquid-Cooling Thermal Management System including Composite Silica Gel and Mini-Channel Cold Plates for a Battery Module," Energies, MDPI, vol. 15(23), pages 1-17, December.
    2. Wang, Anci & Yin, Xiang & Xin, Zhicheng & Cao, Feng & Wu, Zan & Sundén, Bengt & Xiao, Di, 2023. "Performance optimization of electric vehicle battery thermal management based on the transcritical CO2 system," Energy, Elsevier, vol. 266(C).
    3. Ren, Ruyang & Zhao, Yaohua & Diao, Yanhua & Liang, Lin, 2022. "Experimental study on preheating thermal management system for lithium-ion battery based on U-shaped micro heat pipe array," Energy, Elsevier, vol. 253(C).
    4. Shan, Shuai & Li, Li & Xu, Qiang & Ling, Lei & Xie, Yajun & Wang, Hongkang & Zheng, Keqing & Zhang, Lanchun & Bei, Shaoyi, 2023. "Numerical investigation of a compact and lightweight thermal management system with axially mounted cooling tubes for cylindrical lithium-ion battery module," Energy, Elsevier, vol. 274(C).
    5. Ren, Ruyang & Diao, Yanhua & Zhao, Yaohua & Liang, Lin, 2023. "Experimental study on top liquid-cooling thermal management system based on Z-shaped micro heat pipe array," Energy, Elsevier, vol. 282(C).
    6. Shuwen Zhou & Yuemin Zhao & Shangyuan Gao, 2021. "Analysis of Heat Dissipation and Preheating Module for Vehicle Lithium Iron Phosphate Battery," Energies, MDPI, vol. 14(19), pages 1-25, September.
    7. Yin, Shubin & Zhao, Wei & Tang, Yong & Li, Hongming & Huang, Haoyi & Ji, Wei & Zhang, Shiwei, 2024. "Ultra-thin vapour chamber based heat dissipation technology for lithium-ion battery," Applied Energy, Elsevier, vol. 358(C).
    8. Liang, Lin & Zhao, Yaohua & Diao, Yanhua & Ren, Ruyang & Zhu, Tingting & Li, Yan, 2023. "Experimental investigation of preheating performance of lithium-ion battery modules in electric vehicles enhanced by bending flat micro heat pipe array," Applied Energy, Elsevier, vol. 337(C).
    9. Guo, Zengjia & Xu, Qidong & Wang, Yang & Zhao, Tianshou & Ni, Meng, 2023. "Battery thermal management system with heat pipe considering battery aging effect," Energy, Elsevier, vol. 263(PE).
    10. Zhao, Yanqi & Zou, Boyang & Zhang, Tongtong & Jiang, Zhu & Ding, Jianning & Ding, Yulong, 2022. "A comprehensive review of composite phase change material based thermal management system for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Mo, Chongmao & Xie, Jiekai & Zhang, Guoqing & Zou, Zhiyang & Yang, Xiaoqing, 2024. "All-climate battery thermal management system integrating units-assembled phase change material module with forced air convection," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Zu-Guo & Chen, Shuai & Liu, Xun & Chen, Ben, 2021. "A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).
    3. Thomas Imre Cyrille Buidin & Florin Mariasiu, 2021. "Battery Thermal Management Systems: Current Status and Design Approach of Cooling Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    4. Liu, Yuanzhi & Zhang, Jie, 2019. "Design a J-type air-based battery thermal management system through surrogate-based optimization," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Wang, Huaibin & Wang, Shuyu & Feng, Xuning & Zhang, Xuan & Dai, Kangwei & Sheng, Jun & Zhao, Zhenyang & Du, Zhiming & Zhang, Zelin & Shen, Kai & Xu, Chengshan & Wang, Qinzheng & Sun, Xiaoyu & Li, Yanl, 2021. "An experimental study on the thermal characteristics of the Cell-To-Pack system," Energy, Elsevier, vol. 227(C).
    6. Chunyu Zhao & Beile Zhang & Yuanming Zheng & Shunyuan Huang & Tongtong Yan & Xiufang Liu, 2020. "Hybrid Battery Thermal Management System in Electrical Vehicles: A Review," Energies, MDPI, vol. 13(23), pages 1-18, November.
    7. Di Giorgio, Paolo & Di Ilio, Giovanni & Jannelli, Elio & Conte, Fiorentino Valerio, 2022. "Innovative battery thermal management system based on hydrogen storage in metal hydrides for fuel cell hybrid electric vehicles," Applied Energy, Elsevier, vol. 315(C).
    8. Wang, Xueli & Zhang, Pengju & Du, Yan & Liu, Lang & Fang, Jiabin & Ji, Changfa & Wang, Mei & Zhang, Bo & Huan, Chao, 2024. "Numerical investigation on the heat storage/heat release performance enhancement of phase change cemented paste backfill body with using casing-type heat pipe heat exchangers," Renewable Energy, Elsevier, vol. 225(C).
    9. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Hong Shi & Mengmeng Cheng & Yi Feng & Chenghui Qiu & Caiyue Song & Nenglin Yuan & Chuanzhi Kang & Kaijie Yang & Jie Yuan & Yonghao Li, 2023. "Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations," Energies, MDPI, vol. 16(2), pages 1-23, January.
    11. Seham Shahid & Martin Agelin-Chaab, 2017. "Analysis of Cooling Effectiveness and Temperature Uniformity in a Battery Pack for Cylindrical Batteries," Energies, MDPI, vol. 10(8), pages 1-17, August.
    12. Liang, L. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Chen, C.Q., 2021. "Experimental and numerical investigations of latent thermal energy storage using combined flat micro-heat pipe array–metal foam configuration: Simultaneous charging and discharging," Renewable Energy, Elsevier, vol. 171(C), pages 416-430.
    13. Zhao, Weiwei & Zhang, Tongtong & Kildahl, Harriet & Ding, Yulong, 2022. "Mobile energy recovery and storage: Multiple energy-powered EVs and refuelling stations," Energy, Elsevier, vol. 257(C).
    14. Huang, Yi-Huan & Cheng, Yi-Xin & Zhao, Rui & Cheng, Wen-Long, 2020. "A high heat storage capacity form-stable composite phase change material with enhanced flame retardancy," Applied Energy, Elsevier, vol. 262(C).
    15. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Liang, Lin & Zhao, Yaohua & Diao, Yanhua & Ren, Ruyang & Zhu, Tingting & Li, Yan, 2023. "Experimental investigation of preheating performance of lithium-ion battery modules in electric vehicles enhanced by bending flat micro heat pipe array," Applied Energy, Elsevier, vol. 337(C).
    17. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ma, Binjian, 2023. "A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management," Energy, Elsevier, vol. 263(PE).
    18. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    19. Zha, Yunfei & Meng, Xianfeng & Qin, Shuaishuai & Hou, Nairen & He, Shunquan & Huang, Caiyuan & Zuo, Hongyan & Zhao, Xiaohuan, 2023. "Performance evaluation with orthogonal experiment method of drop contact heat dissipation effects on electric vehicle lithium-ion battery," Energy, Elsevier, vol. 271(C).
    20. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.