IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v167y2022ics1364032122005597.html
   My bibliography  Save this article

A comprehensive review of composite phase change material based thermal management system for lithium-ion batteries

Author

Listed:
  • Zhao, Yanqi
  • Zou, Boyang
  • Zhang, Tongtong
  • Jiang, Zhu
  • Ding, Jianning
  • Ding, Yulong

Abstract

This review aims to provide an insight into the composite phase change material (CPCM) based battery thermal management system (BTMS), with a focus on the improvement of battery thermal management (BTM) performance using both passive and hybrid BTMS. The mechanism of battery heat generation and temperature effect on batteries are discussed. Challenges of CPCM based BTMS are found to be mainly associated with phase change material (PCM), which has a low thermal conductivity, low form stability, bad mechanical property, and flammability issues for organic PCM. The building of heat conduction paths could effectively increase the thermal conductivity. Discussion on methods addressing this is made, including the incorporation of PCM into porous materials and dispersing thermally conductive nanomaterials within the PCM. The effects of structure/size and surface modification on the thermal conductivity enhancement are analysed. Recent progress in the PCM adsorption into porous materials and melt blending or copolymerizing with polymers have been reviewed. The methods could improve the form stability and increase mechanical property. Formulation of CPCM using flame retardant and inorganic PCMs is found to be promising to address the flammability challenge. Compared with passive cooling, the hybrid BTMS uses active cooling and thus provides a stronger cooling capacity, and the use of CPCM can enhance heat transfer further and provide better temperature uniformity. The review suggests future research focus on developing assembly methods to minimize interfacial thermal resistance, maximising the mechanical property of CPCM, and enhancing the manufacturing readiness of the CPCM based BTMS.

Suggested Citation

  • Zhao, Yanqi & Zou, Boyang & Zhang, Tongtong & Jiang, Zhu & Ding, Jianning & Ding, Yulong, 2022. "A comprehensive review of composite phase change material based thermal management system for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122005597
    DOI: 10.1016/j.rser.2022.112667
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122005597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiaoming & Xie, Yongqi & Day, Rodney & Wu, Hongwei & Hu, Zhongliang & Zhu, Jianqin & Wen, Dongsheng, 2018. "Performance analysis of a novel thermal management system with composite phase change material for a lithium-ion battery pack," Energy, Elsevier, vol. 156(C), pages 154-168.
    2. Grosu, Yaroslav & Zhao, Yanqi & Giacomello, Alberto & Meloni, Simone & Dauvergne, Jean-Luc & Nikulin, Artem & Palomo, Elena & Ding, Yulong & Faik, Abdessamad, 2020. "Hierarchical macro-nanoporous metals for leakage-free high-thermal conductivity shape-stabilized phase change materials," Applied Energy, Elsevier, vol. 269(C).
    3. Zhang, Long & Zhou, Kechao & Wei, Quiping & Ma, Li & Ye, Wentao & Li, Haichao & Zhou, Bo & Yu, Zhiming & Lin, Cheng-Te & Luo, Jingting & Gan, Xueping, 2019. "Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage," Applied Energy, Elsevier, vol. 233, pages 208-219.
    4. Hussain, Abid & Tso, C.Y. & Chao, Christopher Y.H., 2016. "Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite," Energy, Elsevier, vol. 115(P1), pages 209-218.
    5. Liu, Rui & Chen, Jixin & Xun, Jingzhi & Jiao, Kui & Du, Qing, 2014. "Numerical investigation of thermal behaviors in lithium-ion battery stack discharge," Applied Energy, Elsevier, vol. 132(C), pages 288-297.
    6. Du, Xiaosheng & Qiu, Jinghong & Deng, Sha & Du, Zongliang & Cheng, Xu & Wang, Haibo, 2021. "Flame-retardant and solid-solid phase change composites based on dopamine-decorated BP nanosheets/Polyurethane for efficient solar-to-thermal energy storage," Renewable Energy, Elsevier, vol. 164(C), pages 1-10.
    7. Fu, Xiaowei & Lei, Yuan & Xiao, Yao & Wang, Jiliang & Zhou, Shiyi & Lei, Jingxin, 2021. "Graft poly(ethylene glycol)-based thermosetting phase change materials networks with ultrahigh encapsulation fraction and latent heat efficiency," Renewable Energy, Elsevier, vol. 179(C), pages 1076-1084.
    8. Lv, Youfu & Yang, Xiaoqing & Li, Xinxi & Zhang, Guoqing & Wang, Ziyuan & Yang, Chengzhao, 2016. "Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins," Applied Energy, Elsevier, vol. 178(C), pages 376-382.
    9. Wang, Wei-Wei & Wang, Liang-Bi & He, Ya-Ling, 2015. "The energy efficiency ratio of heat storage in one shell-and-one tube phase change thermal energy storage unit," Applied Energy, Elsevier, vol. 138(C), pages 169-182.
    10. Luo, Xiaohang & Guo, Quangui & Li, Xiangfen & Tao, Zechao & Lei, Shiwen & Liu, Junqing & Kang, Libin & Zheng, Dongfang & Liu, Zhanjun, 2020. "Experimental investigation on a novel phase change material composites coupled with graphite film used for thermal management of lithium-ion batteries," Renewable Energy, Elsevier, vol. 145(C), pages 2046-2055.
    11. Mortazavi, Bohayra & Yang, Hongliu & Mohebbi, Farzad & Cuniberti, Gianaurelio & Rabczuk, Timon, 2017. "Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: A multiscale investigation," Applied Energy, Elsevier, vol. 202(C), pages 323-334.
    12. Jiang, Le & Zhang, Hengyun & Li, Junwei & Xia, Peng, 2019. "Thermal performance of a cylindrical battery module impregnated with PCM composite based on thermoelectric cooling," Energy, Elsevier, vol. 188(C).
    13. Jiang, Zhu & Palacios, Anabel & Zou, Boyang & Zhao, Yanqi & Deng, Weiyu & Zhang, Xiaosong & Ding, Yulong, 2022. "A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Ling, Ziye & Wang, Fangxian & Fang, Xiaoming & Gao, Xuenong & Zhang, Zhengguo, 2015. "A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling," Applied Energy, Elsevier, vol. 148(C), pages 403-409.
    15. Liang, Lin & Zhao, Yaohua & Diao, Yanhua & Ren, Ruyang & Jing, Heran, 2021. "Inclined U-shaped flat microheat pipe array configuration for cooling and heating lithium-ion battery modules in electric vehicles," Energy, Elsevier, vol. 235(C).
    16. Ling, Ziye & Zhang, Zhengguo & Shi, Guoquan & Fang, Xiaoming & Wang, Lei & Gao, Xuenong & Fang, Yutang & Xu, Tao & Wang, Shuangfeng & Liu, Xiaohong, 2014. "Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 427-438.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moeed Rabiei & Ayat Gharehghani & Soheil Saeedipour & Amin Mahmoudzadeh Andwari & Juho Könnö, 2023. "Proposing a Hybrid BTMS Using a Novel Structure of a Microchannel Cold Plate and PCM," Energies, MDPI, vol. 16(17), pages 1-20, August.
    2. E, Shengxin & Cui, Yaxin & Liu, Yuxian & Yin, Huichun, 2023. "Effects of the different phase change materials on heat dissipation performances of the ternary polymer Li-ion battery pack in hot climate," Energy, Elsevier, vol. 282(C).
    3. Li, Jiyan & Long, Yong & Jing, Yanju & Zhang, Jiaqing & Du, Silu & Jiao, Rui & Sun, Hanxue & Zhu, Zhaoqi & Liang, Weidong & Li, An, 2024. "Superhydrophobic multi-shell hollow microsphere confined phase change materials for solar photothermal conversion and energy storage," Applied Energy, Elsevier, vol. 365(C).
    4. Gu, Heng & Chang, Yunwei & Chen, Yuanyuan & Guo, Jiang rong & Zou, Deqiu, 2024. "Experimental research on pipeless power battery cooling system using shape-stabilized phase change materials (SSPCM) coupled with seawater," Energy, Elsevier, vol. 286(C).
    5. E, Jiaqiang & Xiao, Hanxu & Tian, Sicheng & Huang, Yuxin, 2024. "A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion," Renewable Energy, Elsevier, vol. 229(C).
    6. An, Zhiguo & Liu, Huaixi & Gao, Weilin & Zhang, Jianping, 2024. "A triple-hybrid battery thermal management system with drop-shaped fin channels for improving weather tolerance," Energy, Elsevier, vol. 307(C).
    7. Wenzhe Li & Youhang Zhou & Haonan Zhang & Xuan Tang, 2023. "A Review on Battery Thermal Management for New Energy Vehicles," Energies, MDPI, vol. 16(13), pages 1-20, June.
    8. Liang Xu & Shanyi Wang & Lei Xi & Yunlong Li & Jianmin Gao, 2024. "A Review of Thermal Management and Heat Transfer of Lithium-Ion Batteries," Energies, MDPI, vol. 17(16), pages 1-36, August.
    9. Wu, Chunxia & Sun, Yalong & Tang, Heng & Zhang, Shiwei & Yuan, Wei & Zhu, Likuan & Tang, Yong, 2024. "A review on the liquid cooling thermal management system of lithium-ion batteries," Applied Energy, Elsevier, vol. 375(C).
    10. Alexander C. Budiman & Brian Azzopardi & Sudirja & Muhammad A. P. Perdana & Sunarto Kaleg & Febriani S. Hadiastuti & Bagus A. Hasyim & Amin & Rina Ristiana & Aam Muharam & Abdul Hapid, 2023. "Phase Change Material Composite Battery Module for Thermal Protection of Electric Vehicles: An Experimental Observation," Energies, MDPI, vol. 16(9), pages 1-12, May.
    11. Li, Xiaolin & Wang, Jun & Wu, Zhiwei & Cao, Wenxiang & Zhang, Xuesong, 2024. "An energy saving strategy on the composite phase change material and spiral liquid cooling channel for battery thermal management," Renewable Energy, Elsevier, vol. 227(C).
    12. Qin, Siyu & Ji, Ruiyang & Miao, Chengyu & Jin, Liwen & Yang, Chun & Meng, Xiangzhao, 2024. "Review of enhancing boiling and condensation heat transfer: Surface modification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    13. Lu, Shilei & Lin, Quanyi & Xu, Bowen & Yue, Lu & Feng, Wei, 2023. "Thermodynamic performance of cascaded latent heat storage systems for building heating," Energy, Elsevier, vol. 282(C).
    14. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    15. Bogdan Diaconu & Mihai Cruceru & Lucica Anghelescu & Cristinel Racoceanu & Cristinel Popescu & Marian Ionescu & Adriana Tudorache, 2023. "Latent Heat Storage Systems for Thermal Management of Electric Vehicle Batteries: Thermal Performance Enhancement and Modulation of the Phase Transition Process Dynamics: A Literature Review," Energies, MDPI, vol. 16(6), pages 1-46, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Shen, Zu-Guo & Chen, Shuai & Liu, Xun & Chen, Ben, 2021. "A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Cao, Jiahao & Luo, Mingyun & Fang, Xiaoming & Ling, Ziye & Zhang, Zhengguo, 2020. "Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study," Energy, Elsevier, vol. 191(C).
    5. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Ling, Ziye & Cao, Jiahao & Zhang, Wenbo & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology," Applied Energy, Elsevier, vol. 228(C), pages 777-788.
    7. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2018. "A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications," Energy, Elsevier, vol. 162(C), pages 1169-1182.
    8. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    9. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    11. Zichen, Wang & Changqing, Du, 2021. "A comprehensive review on thermal management systems for power lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    12. Basu, Suman & Hariharan, Krishnan S. & Kolake, Subramanya Mayya & Song, Taewon & Sohn, Dong Kee & Yeo, Taejung, 2016. "Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system," Applied Energy, Elsevier, vol. 181(C), pages 1-13.
    13. Bragadeshwaran Ashok & Chidambaram Kannan & Byron Mason & Sathiaseelan Denis Ashok & Vairavasundaram Indragandhi & Darsh Patel & Atharva Sanjay Wagh & Arnav Jain & Chellapan Kavitha, 2022. "Towards Safer and Smarter Design for Lithium-Ion-Battery-Powered Electric Vehicles: A Comprehensive Review on Control Strategy Architecture of Battery Management System," Energies, MDPI, vol. 15(12), pages 1-44, June.
    14. Wu, Weixiong & Wu, Wei & Wang, Shuangfeng, 2019. "Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications," Applied Energy, Elsevier, vol. 236(C), pages 10-21.
    15. Nasiri, Mahdieh & Hadim, Hamid, 2024. "Advances in battery thermal management: Current landscape and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    16. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    18. Jin, Xianrong & Duan, Xiting & Jiang, Wenjuan & Wang, Yan & Zou, Youlan & Lei, Weixin & Sun, Lizhong & Ma, Zengsheng, 2021. "Structural design of a composite board/heat pipe based on the coupled electro-chemical-thermal model in battery thermal management system," Energy, Elsevier, vol. 216(C).
    19. Ma, Ying & Yang, Heng & Zuo, Hongyan & Zuo, Qingsong & He, Xiaoxiang & Chen, Wei & Wei, Rongrong, 2023. "EG@Bi-MOF derived porous carbon/lauric acid composite phase change materials for thermal management of batteries," Energy, Elsevier, vol. 272(C).
    20. Shuwen Zhou & Yuemin Zhao & Shangyuan Gao, 2021. "Analysis of Heat Dissipation and Preheating Module for Vehicle Lithium Iron Phosphate Battery," Energies, MDPI, vol. 14(19), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122005597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.