IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v151y2021ics136403212100887x.html
   My bibliography  Save this article

Review on battery thermal management systems for energy-efficient electric vehicles

Author

Listed:
  • Mali, Vima
  • Saxena, Rajat
  • Kumar, Kundan
  • Kalam, Abul
  • Tripathi, Brijesh

Abstract

This paper provides an overview of the battery thermal management systems (BTMSs) based on the studies carried out by different researchers across the globe. The focus is on enhancing the thermal performance of the battery with the selection and incorporation of a suitable thermal management system. In addition to this, the performance enhancement of lithium-ion (Li-ion) battery systems using supercapacitor (SC) in parallel topological connection, have been discussed. The design options in BTMS and the desired level of sophistication are discussed in this study. For ensuring the performance and safety of Li-ion batteries, a suitable BTMS must be designed to regulate and control the thermal load of the batteries. This would not only result in safety but also ensure longer battery life. This paper presents the summary of recent developments in the direction of BTMS with direct and indirect cooling methods and provides significant insights into the use of SC for reducing the thermal load on the Li-ion batteries, which in turn can help in reducing the cost and weight of BTMS required for energy-efficient electric vehicles (EVs).

Suggested Citation

  • Mali, Vima & Saxena, Rajat & Kumar, Kundan & Kalam, Abul & Tripathi, Brijesh, 2021. "Review on battery thermal management systems for energy-efficient electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:rensus:v:151:y:2021:i:c:s136403212100887x
    DOI: 10.1016/j.rser.2021.111611
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212100887X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Wei & Zhang, Gan & Zhang, Xingxing & Ji, Jie & Li, Guiqiang & Zhao, Xudong, 2015. "Recent development and application of thermoelectric generator and cooler," Applied Energy, Elsevier, vol. 143(C), pages 1-25.
    2. Hamid Elsheikh, Mohamed & Shnawah, Dhafer Abdulameer & Sabri, Mohd Faizul Mohd & Said, Suhana Binti Mohd & Haji Hassan, Masjuki & Ali Bashir, Mohamed Bashir & Mohamad, Mahazani, 2014. "A review on thermoelectric renewable energy: Principle parameters that affect their performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 337-355.
    3. Wang, Qian & Jiang, Bin & Li, Bo & Yan, Yuying, 2016. "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 106-128.
    4. Meng-Chang Lin & Ming Gong & Bingan Lu & Yingpeng Wu & Di-Yan Wang & Mingyun Guan & Michael Angell & Changxin Chen & Jiang Yang & Bing-Joe Hwang & Hongjie Dai, 2015. "An ultrafast rechargeable aluminium-ion battery," Nature, Nature, vol. 520(7547), pages 324-328, April.
    5. E, Jiaqiang & Zeng, Yan & Jin, Yu & Zhang, Bin & Huang, Zhonghua & Wei, Kexiang & Chen, Jingwei & Zhu, Hao & Deng, Yuanwang, 2020. "Heat dissipation investigation of the power lithium-ion battery module based on orthogonal experiment design and fuzzy grey relation analysis," Energy, Elsevier, vol. 211(C).
    6. Jun Liu & Zhenan Bao & Yi Cui & Eric J. Dufek & John B. Goodenough & Peter Khalifah & Qiuyan Li & Bor Yann Liaw & Ping Liu & Arumugam Manthiram & Y. Shirley Meng & Venkat R. Subramanian & Michael F. T, 2019. "Pathways for practical high-energy long-cycling lithium metal batteries," Nature Energy, Nature, vol. 4(3), pages 180-186, March.
    7. Santos, Georgina, 2017. "Road transport and CO2 emissions: What are the challenges?," Transport Policy, Elsevier, vol. 59(C), pages 71-74.
    8. Akinlabi, A.A. Hakeem & Solyali, Davut, 2020. "Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    9. Rao, Zhonghao & Wang, Shuangfeng, 2011. "A review of power battery thermal energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4554-4571.
    10. Kaixiang Lin & Rafael Gómez-Bombarelli & Eugene S. Beh & Liuchuan Tong & Qing Chen & Alvaro Valle & Alán Aspuru-Guzik & Michael J. Aziz & Roy G. Gordon, 2016. "A redox-flow battery with an alloxazine-based organic electrolyte," Nature Energy, Nature, vol. 1(9), pages 1-8, September.
    11. Fan, Liwu & Khodadadi, J.M., 2011. "Thermal conductivity enhancement of phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 24-46, January.
    12. Ling, Ziye & Wang, Fangxian & Fang, Xiaoming & Gao, Xuenong & Zhang, Zhengguo, 2015. "A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling," Applied Energy, Elsevier, vol. 148(C), pages 403-409.
    13. Pan Xiong & Fan Zhang & Xiuyun Zhang & Shijian Wang & Hao Liu & Bing Sun & Jinqiang Zhang & Yi Sun & Renzhi Ma & Yoshio Bando & Cuifeng Zhou & Zongwen Liu & Takayoshi Sasaki & Guoxiu Wang, 2020. "Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    14. Fathabadi, Hassan, 2014. "High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles," Energy, Elsevier, vol. 70(C), pages 529-538.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    2. Liu, Huaqiang & Gao, Xiangcheng & Zhao, Jiyun & Yu, Minghao & Niu, Dong & Ji, Yulong, 2022. "Liquid-based battery thermal management system performance improvement with intersected serpentine channels," Renewable Energy, Elsevier, vol. 199(C), pages 640-652.
    3. Wu, Yue & Huang, Zhiwu & Li, Dongjun & Li, Heng & Peng, Jun & Stroe, Daniel & Song, Ziyou, 2024. "Optimal battery thermal management for electric vehicles with battery degradation minimization," Applied Energy, Elsevier, vol. 353(PA).
    4. Semeraro, Concetta & Aljaghoub, Haya & Abdelkareem, Mohammad Ali & Alami, Abdul Hai & Olabi, A.G., 2023. "Digital twin in battery energy storage systems: Trends and gaps detection through association rule mining," Energy, Elsevier, vol. 273(C).
    5. Pan, Chaofeng & Jia, Zihao & Wang, Jian & Wang, Limei & Wu, Jiaxin, 2023. "Optimization of liquid cooling heat dissipation control strategy for electric vehicle power batteries based on linear time-varying model predictive control," Energy, Elsevier, vol. 283(C).
    6. Ma, Yan & Ma, Qian & Liu, Yongqin & Gao, Jinwu & Chen, Hong, 2024. "Two-level optimization strategy for vehicle speed and battery thermal management in connected and automated EVs," Applied Energy, Elsevier, vol. 361(C).
    7. Liu, Xun & Zhang, Chen-Feng & Zhou, Jian-Gang & Xiong, Xin & Wang, Yi-Ping, 2022. "Thermal performance of battery thermal management system using fins to enhance the combination of thermoelectric Cooler and phase change Material," Applied Energy, Elsevier, vol. 322(C).
    8. Bragadeshwaran Ashok & Chidambaram Kannan & Byron Mason & Sathiaseelan Denis Ashok & Vairavasundaram Indragandhi & Darsh Patel & Atharva Sanjay Wagh & Arnav Jain & Chellapan Kavitha, 2022. "Towards Safer and Smarter Design for Lithium-Ion-Battery-Powered Electric Vehicles: A Comprehensive Review on Control Strategy Architecture of Battery Management System," Energies, MDPI, vol. 15(12), pages 1-44, June.
    9. Jiadian Wang & Dongyang Lv & Haonan Sha & Chenguang Lai & Junxiong Zeng & Tieyu Gao & Hao Yang & Hang Wu & Yanjun Jiang, 2024. "Numerical Investigation on the Thermal Performance of a Battery Pack by Adding Ribs in Cooling Channels," Energies, MDPI, vol. 17(17), pages 1-24, September.
    10. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Ziming Xu & Jun Xu & Zhechen Guo & Haitao Wang & Zheng Sun & Xuesong Mei, 2022. "Design and Optimization of a Novel Microchannel Battery Thermal Management System Based on Digital Twin," Energies, MDPI, vol. 15(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Jin, Xianrong & Duan, Xiting & Jiang, Wenjuan & Wang, Yan & Zou, Youlan & Lei, Weixin & Sun, Lizhong & Ma, Zengsheng, 2021. "Structural design of a composite board/heat pipe based on the coupled electro-chemical-thermal model in battery thermal management system," Energy, Elsevier, vol. 216(C).
    4. Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2022. "Thermal Management of Electrified Vehicles—A Review," Energies, MDPI, vol. 15(4), pages 1-29, February.
    5. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Shuwen Zhou & Yuemin Zhao & Shangyuan Gao, 2021. "Analysis of Heat Dissipation and Preheating Module for Vehicle Lithium Iron Phosphate Battery," Energies, MDPI, vol. 14(19), pages 1-25, September.
    7. Zichen, Wang & Changqing, Du, 2021. "A comprehensive review on thermal management systems for power lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Wu, Weixiong & Yang, Xiaoqing & Zhang, Guoqing & Ke, Xiufang & Wang, Ziyuan & Situ, Wenfu & Li, Xinxi & Zhang, Jiangyun, 2016. "An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack," Energy, Elsevier, vol. 113(C), pages 909-916.
    9. Zhang, Xinghui & Li, Zhao & Luo, Lingai & Fan, Yilin & Du, Zhengyu, 2022. "A review on thermal management of lithium-ion batteries for electric vehicles," Energy, Elsevier, vol. 238(PA).
    10. Jilte, Ravindra & Afzal, Asif & Panchal, Satyam, 2021. "A novel battery thermal management system using nano-enhanced phase change materials," Energy, Elsevier, vol. 219(C).
    11. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    12. Saeed, Ali & Karimi, Nader & Paul, Manosh C., 2021. "Analysis of the unsteady thermal response of a Li-ion battery pack to dynamic loads," Energy, Elsevier, vol. 231(C).
    13. Chen, Kai & Wu, Weixiong & Yuan, Fang & Chen, Lin & Wang, Shuangfeng, 2019. "Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern," Energy, Elsevier, vol. 167(C), pages 781-790.
    14. Shun Kondo & Mana Kameyama & Kentaro Imaoka & Yoko Shimoi & Fabrice Mathevet & Takashi Fujihara & Hiroshi Goto & Hajime Nakanotani & Masayuki Yahiro & Chihaya Adachi, 2024. "Organic thermoelectric device utilizing charge transfer interface as the charge generation by harvesting thermal energy," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Rao, Zhonghao & Wang, Shuangfeng & Peng, Feifei, 2012. "Self diffusion of the nano-encapsulated phase change materials: A molecular dynamics study," Applied Energy, Elsevier, vol. 100(C), pages 303-308.
    16. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    17. Behi, Hamidreza & Karimi, Danial & Jaguemont, Joris & Gandoman, Foad Heidari & Kalogiannis, Theodoros & Berecibar, Maitane & Van Mierlo, Joeri, 2021. "Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications," Energy, Elsevier, vol. 224(C).
    18. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    19. Sheng, Lei & Zhang, Hengyun & Su, Lin & Zhang, Zhendong & Zhang, Hua & Li, Kang & Fang, Yidong & Ye, Wen, 2021. "Effect analysis on thermal profile management of a cylindrical lithium-ion battery utilizing a cellular liquid cooling jacket," Energy, Elsevier, vol. 220(C).
    20. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:151:y:2021:i:c:s136403212100887x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.