IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v165y2022ics1364032122003793.html
   My bibliography  Save this article

Thermal runaway and fire of electric vehicle lithium-ion battery and contamination of infrastructure facility

Author

Listed:
  • Held, Marcel
  • Tuchschmid, Martin
  • Zennegg, Markus
  • Figi, Renato
  • Schreiner, Claudia
  • Mellert, Lars Derek
  • Welte, Urs
  • Kompatscher, Michael
  • Hermann, Michael
  • Nachef, Léa

Abstract

Thermal runaway and the subsequent fire of electric vehicle lithium-ion batteries cause a specific type of contamination. In order to assess the resulting risks of damage to critical infrastructure and to human health, we perform practical thermal runaway experiments with lithium-ion battery modules of an approved, commercially available electric vehicle. Extensive chemical analyses identify and quantify the soot depositions in ventilated and non-ventilated rooms. Contamination mainly consists of the metal oxides of the cathode material, lithium and fluoride compounds. Their influence on surfaces, protective textiles as well as their corrosiveness to typical metals and the impairment of electrical and electronic devices is low. The analysis of sprinkling and cooling water shows the necessary extent of its decontamination. Recommendations include preventive and mitigating measures for the appropriate handling of contamination caused by fires from lithium-ion battery powered electric vehicles.

Suggested Citation

  • Held, Marcel & Tuchschmid, Martin & Zennegg, Markus & Figi, Renato & Schreiner, Claudia & Mellert, Lars Derek & Welte, Urs & Kompatscher, Michael & Hermann, Michael & Nachef, Léa, 2022. "Thermal runaway and fire of electric vehicle lithium-ion battery and contamination of infrastructure facility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
  • Handle: RePEc:eee:rensus:v:165:y:2022:i:c:s1364032122003793
    DOI: 10.1016/j.rser.2022.112474
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122003793
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wangda Li & Evan M. Erickson & Arumugam Manthiram, 2020. "High-nickel layered oxide cathodes for lithium-based automotive batteries," Nature Energy, Nature, vol. 5(1), pages 26-34, January.
    2. Richard Schmuch & Ralf Wagner & Gerhard Hörpel & Tobias Placke & Martin Winter, 2018. "Performance and cost of materials for lithium-based rechargeable automotive batteries," Nature Energy, Nature, vol. 3(4), pages 267-278, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Li, Li & Ling, Lei & Xie, Yajun & Zhou, Wencai & Wang, Tianbo & Zhang, Lanchun & Bei, Shaoyi & Zheng, Keqing & Xu, Qiang, 2023. "Comparative study of thermal management systems with different cooling structures for cylindrical battery modules: Side-cooling vs. terminal-cooling," Energy, Elsevier, vol. 274(C).
    3. Murukadas, Deepu & Cho, Yeonhwa & Lee, Woongki & Lee, Sooyong & Kim, Hwajeong & Kim, Youngkyoo, 2024. "Lithium supercapacitors with environmentally-friend water-processable solid-state hybrid electrolytes of zinc oxide/polymer/lithium hydroxide," Energy, Elsevier, vol. 290(C).
    4. Zhu, Nannan & Tang, Fei, 2024. "Experimental study on flame morphology, ceiling temperature and carbon monoxide generation characteristic of prismatic lithium iron phosphate battery fires with different states of charge in a tunnel," Energy, Elsevier, vol. 301(C).
    5. Hamed Sadegh Kouhestani & Xiaoping Yi & Guoqing Qi & Xunliang Liu & Ruimin Wang & Yang Gao & Xiao Yu & Lin Liu, 2022. "Prognosis and Health Management (PHM) of Solid-State Batteries: Perspectives, Challenges, and Opportunities," Energies, MDPI, vol. 15(18), pages 1-26, September.
    6. E, Jiaqiang & Xiao, Hanxu & Tian, Sicheng & Huang, Yuxin, 2024. "A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion," Renewable Energy, Elsevier, vol. 229(C).
    7. Shen, Dongxu & Yang, Dazhi & Lyu, Chao & Ma, Jingyan & Hinds, Gareth & Sun, Qingmin & Du, Limei & Wang, Lixin, 2024. "Multi-sensor multi-mode fault diagnosis for lithium-ion battery packs with time series and discriminative features," Energy, Elsevier, vol. 290(C).
    8. Ewelina Szmytke & Dorota Brzezińska & Waldemar Machnowski & Szymon Kokot, 2022. "Firefighters’ Clothing Contamination in Fires of Electric Vehicle Batteries and Photovoltaic Modules—Literature Review and Pilot Tests Results," IJERPH, MDPI, vol. 19(19), pages 1-15, September.
    9. Shen, Dongxu & Lyu, Chao & Yang, Dazhi & Hinds, Gareth & Wang, Lixin, 2023. "Connection fault diagnosis for lithium-ion battery packs in electric vehicles based on mechanical vibration signals and broad belief network," Energy, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung-Hui Kim & Ju-Myung Kim & Seok-Kyu Cho & Nag-Young Kim & Sang-Young Lee, 2022. "Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Tang, Chen & Sprecher, Benjamin & Tukker, Arnold & Mogollón, José M., 2021. "The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040," Resources Policy, Elsevier, vol. 74(C).
    3. Danfeng Zhang & Ming Liu & Jiabin Ma & Ke Yang & Zhen Chen & Kaikai Li & Chen Zhang & Yinping Wei & Min Zhou & Peng Wang & Yuanbiao He & Wei Lv & Quan-Hong Yang & Feiyu Kang & Yan-Bing He, 2022. "Lithium hexamethyldisilazide as electrolyte additive for efficient cycling of high-voltage non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Dae-Seon Hong & Yeon-Ji Choi & Chang-Su Jin & Kyoung-Hee Shin & Woo-Jin Song & Sun-Hwa Yeon, 2023. "Enhanced Cycle Performance of NiCo 2 O 4 /CNTs Composites in Lithium-Air Batteries," Energies, MDPI, vol. 17(1), pages 1-14, December.
    5. Han Yang & Shiyu Lin & Alex Cheng & Fangbo He & Zhoulu Wang & Yutong Wu & Yi Zhang & Xiang Liu, 2023. "Recent Advances in Ball-Milling-Based Silicon Anodes for Lithium-Ion Batteries," Energies, MDPI, vol. 16(7), pages 1-21, March.
    6. Roman Gozdur & Tomasz Przerywacz & Dariusz Bogdański, 2021. "Low Power Modular Battery Management System with a Wireless Communication Interface," Energies, MDPI, vol. 14(19), pages 1-20, October.
    7. Entwistle, Jake & Ge, Ruihuan & Pardikar, Kunal & Smith, Rachel & Cumming, Denis, 2022. "Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    8. Gutsch, Moritz & Leker, Jens, 2024. "Costs, carbon footprint, and environmental impacts of lithium-ion batteries – From cathode active material synthesis to cell manufacturing and recycling," Applied Energy, Elsevier, vol. 353(PB).
    9. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    10. Alexander Barke & Walter Cistjakov & Dominik Steckermeier & Christian Thies & Jan‐Linus Popien & Peter Michalowski & Sofia Pinheiro Melo & Felipe Cerdas & Christoph Herrmann & Ulrike Krewer & Arno Kwa, 2023. "Green batteries for clean skies: Sustainability assessment of lithium‐sulfur all‐solid‐state batteries for electric aircraft," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 795-810, June.
    11. Hsieh, I-Yun Lisa & Pan, Menghsuan Sam & Green, William H., 2020. "Transition to electric vehicles in China: Implications for private motorization rate and battery market," Energy Policy, Elsevier, vol. 144(C).
    12. Jessica Kersey & Natalie D. Popovich & Amol A. Phadke, 2022. "Rapid battery cost declines accelerate the prospects of all-electric interregional container shipping," Nature Energy, Nature, vol. 7(7), pages 664-674, July.
    13. Huang, Yaodi & Zhang, Pengcheng & Lu, Jiahuan & Xiong, Rui & Cai, Zhongmin, 2024. "A transferable long-term lithium-ion battery aging trajectory prediction model considering internal resistance and capacity regeneration phenomenon," Applied Energy, Elsevier, vol. 360(C).
    14. Deepayan Debnath & Madhu Khanna & Deepak Rajagopal & David Zilberman, 2019. "The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 563-582, December.
    15. Pranjal Barman & Lachit Dutta & Brian Azzopardi, 2023. "Electric Vehicle Battery Supply Chain and Critical Materials: A Brief Survey of State of the Art," Energies, MDPI, vol. 16(8), pages 1-23, April.
    16. Arjun K. Thapa & Abhinav C. Nouduri & Mohammed Mohiuddin & Hari Prasad Reddy Kannapu & Lihui Bai & Hui Wang & Mahendra K. Sunkara, 2024. "Recycling and Reuse of Mn-Based Spinel Electrode from Spent Lithium-Ion Batteries," Energies, MDPI, vol. 17(16), pages 1-13, August.
    17. Shaozhen Huang & Zhibin Wu & Bernt Johannessen & Kecheng Long & Piao Qing & Pan He & Xiaobo Ji & Weifeng Wei & Yuejiao Chen & Libao Chen, 2023. "Interfacial friction enabling ≤ 20 μm thin free-standing lithium strips for lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    19. Qingyuan Li & Jen-Hung Fang & Wenyuan Li & Xingbo Liu, 2022. "Novel Materials and Advanced Characterization for Energy Storage and Conversion," Energies, MDPI, vol. 15(20), pages 1-3, October.
    20. Jacek Paś, 2023. "Issues Related to Power Supply Reliability in Integrated Electronic Security Systems Operated in Buildings and Vast Areas," Energies, MDPI, vol. 16(8), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:165:y:2022:i:c:s1364032122003793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.