IDEAS home Printed from https://ideas.repec.org/r/zbw/rwirep/155.html
   My bibliography  Save this item

Forecasting Private Consumption: Survey-based Indicators vs. Google Trends

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Martin Obschonka & Mingjie Zhou & Yixin Zhou & Jianxin Zhang & Rainer K. Silbereisen, 2019. "“Confucian” traits, entrepreneurial personality, and entrepreneurship in China: a regional analysis," Small Business Economics, Springer, vol. 53(4), pages 961-979, December.
  2. Falik Shear & Badar Nadeem Ashraf & Mohsin Sadaqat, 2020. "Are Investors’ Attention and Uncertainty Aversion the Risk Factors for Stock Markets? International Evidence from the COVID-19 Crisis," Risks, MDPI, vol. 9(1), pages 1-15, December.
  3. Robert Lehmann, 2016. "Economic Growth and Business Cycle Forecasting at the Regional Level," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 65.
  4. Jichang Dong & Wei Dai & Ying Liu & Lean Yu & Jie Wang, 2019. "Forecasting Chinese Stock Market Prices using Baidu Search Index with a Learning-Based Data Collection Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1605-1629, September.
  5. John M. Barrios & Yael Hochberg, 2020. "Risk Perception Through the Lens of Politics in the Time of the COVID-19 Pandemic," NBER Working Papers 27008, National Bureau of Economic Research, Inc.
  6. Zhongchen Song & Tom Coupé, 2023. "Predicting Chinese consumption series with Baidu," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(3), pages 429-463, July.
  7. Chien-jung Ting & Yi-Long Hsiao & Rui-jun Su, 2022. "Application of the Real-Time Tourism Data in Nowcasting the Service Consumption in Taiwan," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(4), pages 1-4.
  8. repec:zbw:rwirep:0382 is not listed on IDEAS
  9. Cruz-Suarez, Ana & Prado-Román, Alberto & Prado-Román, Miguel, 2014. "Legitimidade cognitiva, acesso aos recursos e resultados organizacionais," RAE - Revista de Administração de Empresas, FGV-EAESP Escola de Administração de Empresas de São Paulo (Brazil), vol. 54(5), September.
  10. Juhro, Solikin M. & Iyke, Bernard Njindan, 2020. "Consumer confidence and consumption expenditure in Indonesia," Economic Modelling, Elsevier, vol. 89(C), pages 367-377.
  11. Oestmann Marco & Bennöhr Lars, 2015. "Determinants of house price dynamics. What can we learn from search engine data?," Review of Economics, De Gruyter, vol. 66(1), pages 99-127, April.
  12. Gustavo Adolfo HERNANDEZ DIAZ & Margarita MARÍN JARAMILLO, 2016. "Pronóstico del Consumo Privado: Usando datos de alta frecuencia para el pronóstico de variables de baja frecuencia," Archivos de Economía 14828, Departamento Nacional de Planeación.
  13. Jaroslav Pavlicek & Ladislav Kristoufek, 2015. "Nowcasting Unemployment Rates with Google Searches: Evidence from the Visegrad Group Countries," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-11, May.
  14. Juan Camilo Anzoátegui-Zapata & Juan Camilo Galvis-Ciro, 2020. "Disagreements in Consumer Inflation Expectations: Empirical Evidence for a Latin American Economy," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 16(2), pages 99-122, November.
  15. Nikolaos Askitas & Klaus F. Zimmermann, 2015. "The internet as a data source for advancement in social sciences," International Journal of Manpower, Emerald Group Publishing Limited, vol. 36(1), pages 2-12, April.
  16. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
  17. Takashi Nakazawa, 2022. "Constructing GDP Nowcasting Models Using Alternative Data," Bank of Japan Working Paper Series 22-E-9, Bank of Japan.
  18. Symitsi, Efthymia & Markellos, Raphael N. & Mantrala, Murali K., 2022. "Keyword portfolio optimization in paid search advertising," European Journal of Operational Research, Elsevier, vol. 303(2), pages 767-778.
  19. van der Wielen, Wouter & Barrios, Salvador, 2021. "Economic sentiment during the COVID pandemic: Evidence from search behaviour in the EU," Journal of Economics and Business, Elsevier, vol. 115(C).
  20. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
  21. Schaer, Oliver & Kourentzes, Nikolaos & Fildes, Robert, 2019. "Demand forecasting with user-generated online information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 197-212.
  22. Chauvet, Marcelle & Gabriel, Stuart & Lutz, Chandler, 2016. "Mortgage default risk: New evidence from internet search queries," Journal of Urban Economics, Elsevier, vol. 96(C), pages 91-111.
  23. Vaid, Shashank & Donthu, Naveen, 2023. "When injured product users may also stay satisfied: A macro-level analysis," Journal of Business Research, Elsevier, vol. 162(C).
  24. Sarun Kamolthip, 2021. "Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data," PIER Discussion Papers 165, Puey Ungphakorn Institute for Economic Research.
  25. David Kohns & Arnab Bhattacharjee, 2020. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," Papers 2011.00938, arXiv.org, revised May 2022.
  26. Jukka Ruohonen & Sami Hyrynsalmi, 2017. "Evaluating the use of internet search volumes for time series modeling of sales in the video game industry," Electronic Markets, Springer;IIM University of St. Gallen, vol. 27(4), pages 351-370, November.
  27. Grimme, Christian & Lehmann, Robert & Noeller, Marvin, 2021. "Forecasting imports with information from abroad," Economic Modelling, Elsevier, vol. 98(C), pages 109-117.
  28. K. Lebedeva, 2015. "An Empirical Analysis of the Russian Financial Markets’ Liquidity and Returns," Review of Business and Economics Studies // Review of Business and Economics Studies, Финансовый Университет // Financial University, vol. 3(3), pages 5-31.
  29. Konstantinos N. Konstantakis & Despoina Paraskeuopoulou & Panayotis G. Michaelides & Efthymios G. Tsionas, 2021. "Bank deposits and Google searches in a crisis economy: Bayesian non‐linear evidence for Greece (2009–2015)," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5408-5424, October.
  30. H. Kent Baker & Satish Kumar & Debidutta Pattnaik, 2021. "Research constituents, intellectual structure, and collaboration pattern in the Journal of Forecasting: A bibliometric analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 577-602, July.
  31. Palma Lampreia Dos Santos, Maria José, 2018. "Nowcasting and forecasting aquaponics by Google Trends in European countries," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 178-185.
  32. Thiemo Fetzer & Lukas Hensel & Johannes Hermle & Christopher Roth, 2021. "Coronavirus Perceptions and Economic Anxiety," The Review of Economics and Statistics, MIT Press, vol. 103(5), pages 968–978-9, December.
  33. Torsten Schmidt & Simeon Vosen, 2012. "Using Internet Data to Account for Special Events in Economic Forecasting," Ruhr Economic Papers 0382, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
  34. Vera Z. Eichenauer & Ronald Indergand & Isabel Z. Martínez & Christoph Sax, 2022. "Obtaining consistent time series from Google Trends," Economic Inquiry, Western Economic Association International, vol. 60(2), pages 694-705, April.
  35. Robert Lehmann, 2021. "Forecasting exports across Europe: What are the superior survey indicators?," Empirical Economics, Springer, vol. 60(5), pages 2429-2453, May.
  36. Han Wang & Geng Peng & Benfu Lv, 2018. "Effect of Retail Investor Attention on Chinas A-Share Market Under a Strengthening Financial Regulatory Policy," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 8(10), pages 1274-1297, October.
  37. Melody Y. Huang & Randall R. Rojas & Patrick D. Convery, 2020. "Forecasting stock market movements using Google Trend searches," Empirical Economics, Springer, vol. 59(6), pages 2821-2839, December.
  38. Jacques Bughin, 2015. "Google searches and twitter mood: nowcasting telecom sales performance," Netnomics, Springer, vol. 16(1), pages 87-105, August.
  39. Fu, Chun & Miller, Clayton, 2022. "Using Google Trends as a proxy for occupant behavior to predict building energy consumption," Applied Energy, Elsevier, vol. 310(C).
  40. Karaman Örsal, Deniz Dilan, 2021. "Onlinedaten und Konsumentscheidungen: Voraussagen anhand von Daten aus Social Media und Suchmaschinen," Edition HWWI: Chapters, in: Straubhaar, Thomas (ed.), Neuvermessung der Datenökonomie, volume 6, pages 157-172, Hamburg Institute of International Economics (HWWI).
  41. George Kapetanios & Fotis Papailias, 2018. "Big Data & Macroeconomic Nowcasting: Methodological Review," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-12, Economic Statistics Centre of Excellence (ESCoE).
  42. Behrens, Christoph, 2019. "Evaluating the Joint Efficiency of German Trade Forecasts. A nonparametric multivariate approach," Working Papers 9, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
  43. Daniel E. O'Leary, 2024. "Toward an extended framework of exhaust data for predictive analytics: An empirical approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
  44. Blazquez, Desamparados & Domenech, Josep, 2018. "Big Data sources and methods for social and economic analyses," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 99-113.
  45. Georgios Bampinas & Theodore Panagiotidis & Christina Rouska, 2019. "Volatility persistence and asymmetry under the microscope: the role of information demand for gold and oil," Scottish Journal of Political Economy, Scottish Economic Society, vol. 66(1), pages 180-197, February.
  46. Mohamed Arouri & Amal Aouadi & Philippe Foulquier & Frédéric Teulon, 2013. "Can Information Demand Help to Predict Stock Market Liquidity ? Google it !," Working Papers 2013-24, Department of Research, Ipag Business School.
  47. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
  48. Olimpia Cutinelli Rendina & Sonja Dobkowitz & Antoine Mayerowitz, 2024. "Environmentally-Responsible Demand: Irresponsible Lobbying? ," Post-Print hal-04502992, HAL.
  49. Daniel Borup & Erik Christian Montes Schütte, 2022. "In Search of a Job: Forecasting Employment Growth Using Google Trends," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 186-200, January.
  50. Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
  51. Hulya Bakirtas & Vildan Gulpinar Demirci, 2022. "Can Google Trends data provide information on consumer’s perception regarding hotel brands?," Information Technology & Tourism, Springer, vol. 24(1), pages 57-83, March.
  52. Dorinth W. van Dijk & Marc K. Francke, 2018. "Internet Search Behavior, Liquidity and Prices in the Housing Market," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 46(2), pages 368-403, June.
  53. Yan Carrière‐Swallow & Felipe Labbé, 2013. "Nowcasting with Google Trends in an Emerging Market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(4), pages 289-298, July.
  54. Maria Elena Bontempi & Michele Frigeri & Roberto Golinelli & Matteo Squadrani, 2021. "EURQ: A New Web Search‐based Uncertainty Index," Economica, London School of Economics and Political Science, vol. 88(352), pages 969-1015, October.
  55. F. Antolini & L. Grassini, 2019. "Foreign arrivals nowcasting in Italy with Google Trends data," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2385-2401, September.
  56. Huang, Xiankai & Zhang, Lifeng & Ding, Yusi, 2017. "The Baidu Index: Uses in predicting tourism flows –A case study of the Forbidden City," Tourism Management, Elsevier, vol. 58(C), pages 301-306.
  57. Klein, Tony, 2021. "Agree to Disagree? Predictions of U.S. Nonfarm Payroll Changes between 2008 and 2020 and the Impact of the COVID19 Labor Shock," QBS Working Paper Series 2021/07, Queen's University Belfast, Queen's Business School.
  58. Christine Dauth & Julia Lang, 2024. "Continuing vocational training in times of economic uncertainty: an event-study analysis in real time," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 58(1), pages 1-23, December.
  59. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
  60. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
  61. Nuscheler, Daniela & Engelen, Andreas & Zahra, Shaker A., 2019. "The role of top management teams in transforming technology-based new ventures' product introductions into growth," Journal of Business Venturing, Elsevier, vol. 34(1), pages 122-140.
  62. Niesert, Robin F. & Oorschot, Jochem A. & Veldhuisen, Christian P. & Brons, Kester & Lange, Rutger-Jan, 2020. "Can Google search data help predict macroeconomic series?," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1163-1172.
  63. Chiu, Peng-Chia & Teoh, Siew Hong & Zhang, Yinglei & Huang, Xuan, 2023. "Using Google searches of firm products to detect revenue management," Accounting, Organizations and Society, Elsevier, vol. 109(C).
  64. David C Vitt, 2020. "Estimating the impact of e-commerce on retail exit and entry using Google Trends," Economics Bulletin, AccessEcon, vol. 40(1), pages 679-688.
  65. Pirschel, Inske, 2016. "Forecasting euro area recessions in real-time," Kiel Working Papers 2020, Kiel Institute for the World Economy (IfW Kiel).
  66. Olivier Gergaud & Victor Ginsburgh, 2016. "Evaluating the Economic Effects of Cultural Events," Working Papers ECARES ECARES 2016-24, ULB -- Universite Libre de Bruxelles.
  67. Chong, Terence Tai Leung & Li, Chen, 2020. "Search of Attention in Financial Market," MPRA Paper 99003, University Library of Munich, Germany.
  68. Chien-jung Ting & Yi-Long Hsiao, 2022. "Nowcasting the GDP in Taiwan and the Real-Time Tourism Data," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 12(3), pages 1-2.
  69. Smith, Geoffrey Peter, 2012. "Google Internet search activity and volatility prediction in the market for foreign currency," Finance Research Letters, Elsevier, vol. 9(2), pages 103-110.
  70. Matteo Pazzona & Nicola Spagnolo, 2024. "Do not shut up and do dribble: social media and TV consumption," Journal of Population Economics, Springer;European Society for Population Economics, vol. 37(2), pages 1-25, June.
  71. Bulut Levent & Dogan Can, 2018. "Google Trends and Structural Exchange Rate Models for Turkish Lira–US Dollar Exchange Rate," Review of Middle East Economics and Finance, De Gruyter, vol. 14(2), pages 1-12, August.
  72. Benedikt Maas, 2020. "Short‐term forecasting of the US unemployment rate," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 394-411, April.
  73. France, Stephen L. & Shi, Yuying & Kazandjian, Brett, 2021. "Web Trends: A valuable tool for business research," Journal of Business Research, Elsevier, vol. 132(C), pages 666-679.
  74. Livio Fenga, 2020. "Filtering and prediction of noisy and unstable signals: The case of Google Trends data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 281-295, March.
  75. Roland Döhrn, 2011. "Konjunkturprognosen in bewegten Zeiten: Die Kunst des Unmöglichen?," RWI Materialien, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, pages 26, 01.
  76. Roland Döhrn & Tobias Kitlinski & Martin Micheli & Torsten Schmidt & Simeon Vosen & György Barabas & Heinz Gebhardt & Lina Zimmermann, 2010. "Die wirtschaftliche Entwicklung im Inland zur Jahresmitte 2010 - Aufschwung verliert an Fahrt," RWI Konjunkturbericht, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, pages 46, 09.
  77. Michael Funke & Aaron Mehrotra & Hao Yu, 2015. "Tracking Chinese CPI inflation in real time," Empirical Economics, Springer, vol. 48(4), pages 1619-1641, June.
  78. Anastasiou, Dimitrios & Bragoudakis, Zacharias & Giannoulakis, Stelios, 2021. "Perceived vs actual financial crisis and bank credit standards: Is there any indication of self-fulfilling prophecy?," Research in International Business and Finance, Elsevier, vol. 58(C).
  79. Matheus Pereira Libório & Petr Iakovlevitch Ekel & Carlos Augusto Paiva Martins, 2023. "Economic analysis through alternative data and big data techniques: what do they tell about Brazil?," SN Business & Economics, Springer, vol. 3(1), pages 1-16, January.
  80. Döhrn, Roland & Barabas, György & Gebhardt, Heinz & Kitlinski, Tobias & Micheli, Martin & Schmidt, Torsten & Vosen, Simeon & Zimmermann, Lina, 2010. "Die wirtschaftliche Entwicklung im Inland: Aufschwung verliert an Fahrt," RWI Konjunkturberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, vol. 61(2), pages 37-82.
  81. Joop Age Harm Adema & Maitreyee Guha, 2022. "Following the Online Trail of Ukrainian Refugees through Google Trends," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 23(04), pages 62-66, July.
  82. Dejian Yu & Libo Sheng & Shunshun Shi, 2023. "A retrospective analysis of Journal of Forecasting: From 1982 to 2019," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 1008-1035, July.
  83. Bouoiyour, Jamal & Selmi, Refk & Tiwari, Aviral, 2014. "Is Bitcoin business income or speculative bubble? Unconditional vs. conditional frequency domain analysis," MPRA Paper 59595, University Library of Munich, Germany.
  84. Jaroslav Pavlicek & Ladislav Kristoufek, 2014. "Can Google searches help nowcast and forecast unemployment rates in the Visegrad Group countries?," Papers 1408.6639, arXiv.org.
  85. Stephen Bruestle & W. Mark Crain, 2015. "A mean-variance approach to forecasting with the consumer confidence index," Applied Economics, Taylor & Francis Journals, vol. 47(23), pages 2430-2444, May.
  86. Nuno Barreira & Pedro Godinho & Paulo Melo, 2013. "Nowcasting unemployment rate and new car sales in south-western Europe with Google Trends," Netnomics, Springer, vol. 14(3), pages 129-165, November.
  87. Döhrn Roland & Schmidt Christoph M., 2011. "Information or Institution?: On the Determinants of Forecast Accuracy," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 9-27, February.
  88. Döhrn, Roland, 2010. "Konjunkturprognosen in bewegten Zeiten: Die Kunst des Unmöglichen?," RWI Materialien 62, RWI - Leibniz-Institut für Wirtschaftsforschung.
  89. Vicente, María Rosalía & López-Menéndez, Ana J. & Pérez, Rigoberto, 2015. "Forecasting unemployment with internet search data: Does it help to improve predictions when job destruction is skyrocketing?," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 132-139.
  90. Erik Christian Montes Schütte, 2018. "In Search of a Job: Forecasting Employment Growth in the US using Google Trends," CREATES Research Papers 2018-25, Department of Economics and Business Economics, Aarhus University.
  91. Serhan Cevik, 2022. "Where should we go? Internet searches and tourist arrivals," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4048-4057, October.
  92. Eksi, Ozan & Gurdal, Mehmet Y. & Orman, Cuneyt, 2017. "Fines versus prison for the issuance of bad checks: Evidence from a policy shift in Turkey," Journal of Economic Behavior & Organization, Elsevier, vol. 143(C), pages 9-27.
  93. Soyeon Caren Han & Yulu Liang & Hyunsuk Chung & Hyejin Kim & Byeong Ho Kang, 2016. "Chinese trending search terms popularity rank prediction," Information Technology and Management, Springer, vol. 17(2), pages 133-139, June.
  94. Craig A. Depken II & E. Frank Stephenson, 2017. "Copper Theft in the United States," The American Economist, Sage Publications, vol. 62(1), pages 66-76, March.
  95. Kristoufek, Ladislav, 2015. "Power-law correlations in finance-related Google searches, and their cross-correlations with volatility and traded volume: Evidence from the Dow Jones Industrial components," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 194-205.
  96. Aaronson, Daniel & Brave, Scott A. & Butters, R. Andrew & Fogarty, Michael & Sacks, Daniel W. & Seo, Boyoung, 2022. "Forecasting unemployment insurance claims in realtime with Google Trends," International Journal of Forecasting, Elsevier, vol. 38(2), pages 567-581.
  97. repec:ipg:wpaper:24 is not listed on IDEAS
  98. Li, Xin & Pan, Bing & Law, Rob & Huang, Xiankai, 2017. "Forecasting tourism demand with composite search index," Tourism Management, Elsevier, vol. 59(C), pages 57-66.
  99. Hantzsche, Arno, 2022. "Fiscal uncertainty and sovereign credit risk," European Economic Review, Elsevier, vol. 148(C).
  100. Boubaker, Sabri & Liu, Zhenya & Zhai, Ling, 2021. "Big data, news diversity and financial market crash," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
  101. Costanza Catalano & Andrea Carboni & Claudio Doria, 2023. "How can Big Data improve the quality of tourism statistics? The Bank of Italy's experience in compiling the "travel" item in the Balance of Payments," Questioni di Economia e Finanza (Occasional Papers) 761, Bank of Italy, Economic Research and International Relations Area.
  102. Ivana Lolić & Marija Logarušić & Mirjana Čižmešija, 2022. "Recent Revision of the European Consumer Confidence Indicator: Is There any additional Space for Improvement?," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 159(3), pages 845-863, February.
  103. repec:ipg:wpaper:2013-024 is not listed on IDEAS
  104. Siliverstovs, Boriss & Wochner, Daniel S., 2018. "Google Trends and reality: Do the proportions match?," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 1-23.
  105. Alessia Naccarato & Andrea Pierini & Stefano Falorsi, 2015. "Using Google Trend Data To Predict The Italian Unemployment Rate," Departmental Working Papers of Economics - University 'Roma Tre' 0203, Department of Economics - University Roma Tre.
  106. Hongying Dai & Brian R. Lee & Jianqiang Hao, 2017. "Predicting Asthma Prevalence by Linking Social Media Data and Traditional Surveys," The ANNALS of the American Academy of Political and Social Science, , vol. 669(1), pages 75-92, January.
  107. Nikolaos Askitas, 2015. "Google search activity data and breaking trends," IZA World of Labor, Institute of Labor Economics (IZA), pages 206-206, November.
  108. Bantis, Evripidis & Clements, Michael P. & Urquhart, Andrew, 2023. "Forecasting GDP growth rates in the United States and Brazil using Google Trends," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1909-1924.
  109. Sara Ayllón & Samuel Lado, 2022. "Food Hardship in the US During the Pandemic: What Can We Learn From Real‐Time Data?," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 68(2), pages 518-540, June.
  110. Seabold,Skipper & Coppola,Andrea, 2015. "Nowcasting prices using Google trends : an application to Central America," Policy Research Working Paper Series 7398, The World Bank.
  111. Paul Gift, 2020. "Moving the Needle in MMA: On the Marginal Revenue Product of UFC Fighters," Journal of Sports Economics, , vol. 21(2), pages 176-209, February.
  112. Jiam Song & Kwangmin Jung & Jonghun Kam, 2023. "Evidence of the time-varying impacts of the COVID-19 pandemic on online search activities relating to shopping products in South Korea," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
  113. Schmidt, Torsten & Vosen, Simeon, 2012. "Using Internet Data to Account for Special Events in Economic Forecasting," Ruhr Economic Papers 382, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  114. Michael Funke & Aaron Mehrotra & Hao Yu, 2015. "Tracking Chinese CPI inflation in real time," Empirical Economics, Springer, vol. 48(4), pages 1619-1641, June.
  115. Imene Ben El Hadj Said & Skander Slim, 2022. "The Dynamic Relationship between Investor Attention and Stock Market Volatility: International Evidence," JRFM, MDPI, vol. 15(2), pages 1-25, February.
  116. Li Long, Chan & Guleria, Yash & Alam, Sameer, 2021. "Air passenger forecasting using Neural Granger causal Google trend queries," Journal of Air Transport Management, Elsevier, vol. 95(C).
  117. Javier Sebastian, 2016. "Blockchain in financial services: Regulatory landscape and future challenges," Working Papers 16/21, BBVA Bank, Economic Research Department.
  118. Döhrn, Roland & Kitlinski, Tobias & Schmidt, Torsten & Vosen, Simeon, 2010. "Die wirtschaftliche Entwicklung im Ausland: Belasteter Aufschwung," RWI Konjunkturberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, vol. 61(1), pages 5-35.
  119. Vicki Wei Tang, 2018. "Wisdom of Crowds: Cross‐Sectional Variation in the Informativeness of Third‐Party‐Generated Product Information on Twitter," Journal of Accounting Research, Wiley Blackwell, vol. 56(3), pages 989-1034, June.
  120. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
  121. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
  122. Lengyel, Attila, 2016. "Tourism, meditation, sustainability," APSTRACT: Applied Studies in Agribusiness and Commerce, AGRIMBA, vol. 10(1), pages 1-11, March.
  123. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
  124. Takahashi, Carlos Kazunari & Figueiredo, Júlio César Bastos de & Scornavacca, Eusebio, 2024. "Investigating the diffusion of innovation: A comprehensive study of successive diffusion processes through analysis of search trends, patent records, and academic publications," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
  125. Puhr, Harald & Müllner, Jakob, 2024. "Vox populi, vox dei: A concept and measure for grassroots socio-political risk using Google Trends," Journal of International Management, Elsevier, vol. 30(2).
  126. Burcu Kapar & Jose Olmo, 2021. "Analysis of Bitcoin prices using market and sentiment variables," The World Economy, Wiley Blackwell, vol. 44(1), pages 45-63, January.
  127. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2020. "Googling Unemployment During the Pandemic: Inference and Nowcast Using Search Data," JRC Working Papers in Economics and Finance 2020-04, Joint Research Centre, European Commission.
  128. Zeynalov, Ayaz, 2014. "Nowcasting Tourist Arrivals to Prague: Google Econometrics," MPRA Paper 60945, University Library of Munich, Germany.
  129. Jun, Seung-Pyo & Sung, Tae-Eung & Park, Hyun-Woo, 2017. "Forecasting by analogy using the web search traffic," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 37-51.
  130. Bangwayo-Skeete, Prosper F. & Skeete, Ryan W., 2015. "Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach," Tourism Management, Elsevier, vol. 46(C), pages 454-464.
  131. Kohns, David & Bhattacharjee, Arnab, 2023. "Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
  132. Zhang, Chuan & Tian, Yu-Xin & Fan, Zhi-Ping, 2022. "Forecasting sales using online review and search engine data: A method based on PCA–DSFOA–BPNN," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1005-1024.
  133. Zeynalov, Ayaz, 2017. "Forecasting Tourist Arrivals in Prague: Google Econometrics," MPRA Paper 83268, University Library of Munich, Germany.
  134. repec:zbw:rwirep:0208 is not listed on IDEAS
  135. Dimitrios Anastasiou & Konstantinos Drakos, 2021. "Nowcasting the Greek (semi‐) deposit run: Hidden uncertainty about the future currency in a Google search," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1133-1150, January.
  136. Joseph DiGrazia, 2017. "Using Internet Search Data to Produce State-level Measures: The Case of Tea Party Mobilization," Sociological Methods & Research, , vol. 46(4), pages 898-925, November.
  137. Jun, Seung-Pyo & Park, Do-Hyung, 2016. "Consumer information search behavior and purchasing decisions: Empirical evidence from Korea," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 97-111.
  138. Azusa Matsumoto & Kohei Matsumura & Noriyuki Shiraki, 2013. "Potential of Search Data in Assessment of Current Economic Conditions," Bank of Japan Research Papers 2013-04-18, Bank of Japan.
  139. Simionescu, Mihaela & Zimmermann, Klaus F., 2017. "Big Data and Unemployment Analysis," GLO Discussion Paper Series 81, Global Labor Organization (GLO).
  140. Torsten Schmidt & Simeon Vosen, 2010. "A monthly consumption indicator for Germany based on internet search query data," Ruhr Economic Papers 0208, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
  141. Johannes Bock, 2018. "Quantifying macroeconomic expectations in stock markets using Google Trends," Papers 1805.00268, arXiv.org.
  142. Cristea, R. G., 2020. "Can Alternative Data Improve the Accuracy of Dynamic Factor Model Nowcasts?," Cambridge Working Papers in Economics 20108, Faculty of Economics, University of Cambridge.
  143. Woondong Yeo & Seonho Kim & Byoung-Youl Coh & Jaewoo Kang, 2013. "A quantitative approach to recommend promising technologies for SME innovation: a case study on knowledge arbitrage from LCD to solar cell," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(2), pages 589-604, August.
  144. Kristina Gligorić & Arnaud Chiolero & Emre Kıcıman & Ryen W. White & Robert West, 2022. "Population-scale dietary interests during the COVID-19 pandemic," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  145. Dimitra Kontana & Fotios Siokis, 2019. "Revisiting the Relationship between Financial Wealth, Housing Wealth, and Consumption: A Panel Analysis for the U.S," Discussion Paper Series 2019_03, Department of Economics, University of Macedonia, revised May 2019.
  146. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
  147. Botezat, Alina, 2017. "Austerity plan announcements and the impact on the employees’ wellbeing," Journal of Economic Psychology, Elsevier, vol. 63(C), pages 1-16.
  148. Tsoyu Calvin Lin & Shih-Hsun Hsu, 2020. "Forecasting Housing Markets from Number of Visits to Actual Price Registration System," International Real Estate Review, Global Social Science Institute, vol. 23(4), pages 505-536.
  149. Yakubu, Hanan & Kwong, C.K., 2021. "Forecasting the importance of product attributes using online customer reviews and Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
  150. Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
  151. Alberto Urtasun & Mara Gil & Javier J. Perez, 2017. "Nowcasting private consumption: traditional indicators, uncertainty measures, and the role of internet search query data," EcoMod2017 10745, EcoMod.
  152. Ladislav Kristoufek, 2013. "Can Google Trends search queries contribute to risk diversification?," Papers 1310.1444, arXiv.org.
  153. Jun, Seung-Pyo & Park, Do-Hyung & Yeom, Jaeho, 2014. "The possibility of using search traffic information to explore consumer product attitudes and forecast consumer preference," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 237-253.
  154. repec:zbw:rwimat:062 is not listed on IDEAS
  155. Ramya Rajajagadeesan Aroul & Sanjiv Sabherwal & Sergiy Saydometov, 2022. "FEAR Index, city characteristics, and housing returns," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 50(1), pages 173-205, March.
  156. Chong, Terence Tai Leung & Wu, Zhang & Liu, Yuchen, 2019. "Market Reaction to iPhone Rumors," MPRA Paper 92014, University Library of Munich, Germany.
  157. repec:zbw:bofitp:2011_035 is not listed on IDEAS
  158. Stephen L. France & Yuying Shi, 2017. "Aggregating Google Trends: Multivariate Testing and Analysis," Papers 1712.03152, arXiv.org, revised Mar 2018.
  159. Nicolas Woloszko, 2020. "Tracking activity in real time with Google Trends," OECD Economics Department Working Papers 1634, OECD Publishing.
  160. Sergiy Saydometov & Sanjiv Sabherwal & Ramya Rajajagadeesan Aroul, 2020. "Sentiment and its asymmetric effect on housing returns," Review of Financial Economics, John Wiley & Sons, vol. 38(4), pages 580-600, October.
  161. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).
  162. Masha Krupenkin & David Rothschild & Shawndra Hill & Elad Yom-Tov, 2019. "President Trump Stress Disorder: Partisanship, Ethnicity, and Expressive Reporting of Mental Distress After the 2016 Election," SAGE Open, , vol. 9(1), pages 21582440198, March.
  163. Rex Yuxing Du & Tsung-Yiou Hsieh, 2023. "Leveraging Online Search Data as a Source of Marketing Insights," Foundations and Trends(R) in Marketing, now publishers, vol. 17(4), pages 227-291, August.
  164. Iva Glišic, 2024. "A comparison of using MIDAS and LSTM models for GDP nowcasting," Working Papers Bulletin 22, National Bank of Serbia.
  165. Ailian Zhang & Shuyao Wang & Bai Liu & Pei Liu, 2022. "How fintech impacts pre‐ and post‐loan risk in Chinese commercial banks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2514-2529, April.
  166. Klein, Tony, 2022. "Agree to disagree? Predictions of U.S. nonfarm payroll changes between 2008 and 2020 and the impact of the COVID19 labor shock," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 264-286.
  167. Gao, Lei & Mei, Bin, 2013. "Investor attention and abnormal performance of timberland investments in the United States," Forest Policy and Economics, Elsevier, vol. 28(C), pages 60-65.
  168. Olaya Álvarez-García & Jaume Sureda-Negre & Rubén Comas-Forgas & Miquel F. Oliver-Trobat, 2023. "The Spanish population’s interest in climate change based on Internet searches," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-9, December.
  169. Jolana Stejskalova, 2023. "We investigated the link between stock returns of automobile companies, Fama French factors, and behavioral attention, represented by demand for a selected car brand belonging to an automobile company," Journal of Economics / Ekonomicky casopis, Institute of Economic Research, Slovak Academy of Sciences, vol. 71(3), pages 202-221, March.
  170. Roland Döhrn & Tobias Kitlinski & Torsten Schmidt & Simeon Vosen, 2010. "Die wirtschaftliche Entwicklung im Ausland zur Jahreswende 2009/2010 - Belasteter Aufschwung," RWI Konjunkturbericht, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, pages 31, 03.
  171. Gomes, Pedro & Taamouti, Abderrahim, 2016. "In search of the determinants of European asset market comovements," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 103-117.
  172. Jun, Seung-Pyo & Yoo, Hyoung Sun & Choi, San, 2018. "Ten years of research change using Google Trends: From the perspective of big data utilizations and applications," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 69-87.
  173. Abay, Kibrom A. & Ibrahim, Hosam, 2020. "Winners and losers from COVID-19: Evidence from Google search data for Egypt," MENA policy notes 8, International Food Policy Research Institute (IFPRI).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.