A babel of web-searches: Googling unemployment during the pandemic
Author
Abstract
Suggested Citation
DOI: 10.1016/j.labeco.2021.102097
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
- Thomas Hale & Noam Angrist & Rafael Goldszmidt & Beatriz Kira & Anna Petherick & Toby Phillips & Samuel Webster & Emily Cameron-Blake & Laura Hallas & Saptarshi Majumdar & Helen Tatlow, 2021. "A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker)," Nature Human Behaviour, Nature, vol. 5(4), pages 529-538, April.
- Fondeur, Y. & Karamé, F., 2013.
"Can Google data help predict French youth unemployment?,"
Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
- Frédéric Karamé & Yannick Fondeur, 2012. "Can Google Data Help Predict French Youth Unemployment?," Documents de recherche 12-03, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
- Y. Fondeur & F. Karamé, 2013. "Can Google data help predict French youth unemployment?," Post-Print hal-02297071, HAL.
- Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
- Stephens-Davidowitz, Seth, 2014. "The cost of racial animus on a black candidate: Evidence using Google search data," Journal of Public Economics, Elsevier, vol. 118(C), pages 26-40.
- Scott R. Baker & Andrey Fradkin, 2017. "The Impact of Unemployment Insurance on Job Search: Evidence from Google Search Data," The Review of Economics and Statistics, MIT Press, vol. 99(5), pages 756-768, December.
- D’Amuri, Francesco & Marcucci, Juri, 2017.
"The predictive power of Google searches in forecasting US unemployment,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
- Francesco D'Amuri & Juri Marcucci, 2012. "The predictive power of Google searches in forecasting unemployment," Temi di discussione (Economic working papers) 891, Bank of Italy, Economic Research and International Relations Area.
- Gary Koop & Luca Onorante, 2019. "Macroeconomic Nowcasting Using Google Probabilities☆," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 17-40, Emerald Group Publishing Limited.
- Thiemo Fetzer & Lukas Hensel & Johannes Hermle & Christopher Roth, 2021.
"Coronavirus Perceptions and Economic Anxiety,"
The Review of Economics and Statistics, MIT Press, vol. 103(5), pages 968–978-9, December.
- Thiemo Fetzer & Lukas Hensel & Johannes Hermle & Christopher Roth, 2020. "Coronavirus Perceptions And Economic Anxiety," Papers 2003.03848, arXiv.org, revised Jul 2020.
- Brodeur, Abel & Clark, Andrew E. & Fleche, Sarah & Powdthavee, Nattavudh, 2021.
"COVID-19, lockdowns and well-being: Evidence from Google Trends,"
Journal of Public Economics, Elsevier, vol. 193(C).
- Brodeur, Abel & Clark, Andrew E. & Fleche, Sarah & Powdthavee, Nattavudh, 2020. "COVID-19, lockdowns and well-being: evidence from Google Trends," LSE Research Online Documents on Economics 108456, London School of Economics and Political Science, LSE Library.
- Abel Brodeur & Andrew E. Clark & Sarah Flèche & Nattavudh Powdthavee, 2021. "COVID-19, Lockdowns and Well-Being: Evidence from Google Trends," PSE-Ecole d'économie de Paris (Postprint) halshs-03029872, HAL.
- Brodeur, Abel & Clark, Andrew E. & Flèche, Sarah & Powdthavee, Nattavudh, 2020. "COVID-19, Lockdowns and Well-Being: Evidence from Google Trends," IZA Discussion Papers 13204, Institute of Labor Economics (IZA).
- Abel Brodeur & Andrew E. Clark & Sarah Flèche & Nattavudh Powdthavee, 2020. "Covid-19, lockdowns and well-being: evidence from Google trends," CEP Discussion Papers dp1693, Centre for Economic Performance, LSE.
- Brodeur, Abel & Clark, Andrew E. & Fleche, Sarah & Powdthavee, Nattavudh, 2020. "COVID-19, Lockdowns and Well-Being: Evidence from Google Trends," GLO Discussion Paper Series 552, Global Labor Organization (GLO).
- Abel Brodeur & Andrew E. Clark & Sarah Flèche & Nattavudh Powdthavee, 2021. "COVID-19, Lockdowns and Well-Being: Evidence from Google Trends," Post-Print halshs-03029872, HAL.
- Abel Brodeur & Andrew Clark & Sarah Fleche & Nattavudh Powdthavee, 2020. "COVID-19, Lockdowns and Well-Being: Evidence from Google Trends," Working Papers 2004E, University of Ottawa, Department of Economics.
- Jetter, Michael, 2019. "The inadvertent consequences of al-Qaeda news coverage," European Economic Review, Elsevier, vol. 119(C), pages 391-410.
- Zhi Da & Joseph Engelberg & Pengjie Gao, 2015. "Editor's Choice The Sum of All FEARS Investor Sentiment and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 1-32.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Niesert, Robin F. & Oorschot, Jochem A. & Veldhuisen, Christian P. & Brons, Kester & Lange, Rutger-Jan, 2020.
"Can Google search data help predict macroeconomic series?,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 1163-1172.
- Robin Niesert & Jochem Oorschot & Chris Veldhuisen & Kester Brons & Rutger-Jan Lange, "undated". "Can Google Search Data Help Predict Macroeconomic Series?," Tinbergen Institute Discussion Papers 19-021/III, Tinbergen Institute.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Paolo BRUNORI & Giuliano RESCE, 2020.
"Searching for the peak Google Trends and the Covid-19 outbreak in Italy,"
Working Papers - Economics
wp2020_05.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
- Paolo Brunori & Giuliano Resce, 2020. "Searching for the peak Google Trends and the Covid-19 outbreak in Italy," SERIES 04-2020, Dipartimento di Economia e Finanza - Università degli Studi di Bari "Aldo Moro", revised Apr 2020.
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Simeon Vosen & Torsten Schmidt, 2011.
"Forecasting private consumption: survey‐based indicators vs. Google trends,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
- Schmidt, Torsten & Vosen, Simeon, 2009. "Forecasting Private Consumption: Survey-based Indicators vs. Google Trends," Ruhr Economic Papers 155, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Claveria, Oscar & Pons, Ernest & Ramos, Raul, 2007. "Business and consumer expectations and macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 47-69.
- Daniel Aaronson & Scott A. Brave & R. Andrew Butters & Daniel W. Sacks & Boyoung Seo, 2020.
"Using the Eye of the Storm to Predict the Wave of Covid-19 UI Claims,"
Working Paper Series
WP 2020-10, Federal Reserve Bank of Chicago.
- Daniel Aaronson & Scott A. Brave & R. Andrew Butters & Daniel Sacks & Boyoung Seo, 2020. "Using the Eye of the Storm to Predict the Wave of Covid-19 UI Claims," Working Paper Series WP-2020-10, Federal Reserve Bank of Chicago, revised 16 Apr 2020.
- Paul Smith, 2016. "Google's MIDAS Touch: Predicting UK Unemployment with Internet Search Data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(3), pages 263-284, April.
- R?diger Bachmann & Steffen Elstner & Eric R. Sims, 2013.
"Uncertainty and Economic Activity: Evidence from Business Survey Data,"
American Economic Journal: Macroeconomics, American Economic Association, vol. 5(2), pages 217-249, April.
- Steffen Elstner & Eric Sims & Ruediger Bachmann, 2010. "Uncertainty and Economic Activity: Evidence from Business Survey Data," 2010 Meeting Papers 614, Society for Economic Dynamics.
- Eric R. Sims, 2012. "Uncertainty and Economic Activity: Evidence from Business Survey Data," Working Papers 014, University of Notre Dame, Department of Economics, revised Jun 2012.
- Ruediger Bachmann & Steffen Elstner & Eric R. Sims, 2010. "Uncertainty and Economic Activity: Evidence from Business Survey Data," NBER Working Papers 16143, National Bureau of Economic Research, Inc.
- Götz, Thomas B. & Knetsch, Thomas A., 2019.
"Google data in bridge equation models for German GDP,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
- Götz, Thomas B. & Knetsch, Thomas A., 2017. "Google data in bridge equation models for German GDP," Discussion Papers 18/2017, Deutsche Bundesbank.
- Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021.
"Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
- Marcelo Madeiros & Gabriel Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2019. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Working Papers Central Bank of Chile 834, Central Bank of Chile.
- Abberger, Klaus, 2007.
"Qualitative business surveys and the assessment of employment -- A case study for Germany,"
International Journal of Forecasting, Elsevier, vol. 23(2), pages 249-258.
- Klaus Abberger, 2005. "Qualitative Business Surveys and the Assessment of Employment A Case Study for Germany," ifo Working Paper Series 11, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Simeon Vosen & Torsten Schmidt, 2012.
"A monthly consumption indicator for Germany based on Internet search query data,"
Applied Economics Letters, Taylor & Francis Journals, vol. 19(7), pages 683-687, May.
- Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
- Schmidt, Torsten & Vosen, Simeon, 2010. "A monthly consumption indicator for Germany based on internet search query data," Ruhr Economic Papers 208, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Siliverstovs, Boriss & Wochner, Daniel S., 2018. "Google Trends and reality: Do the proportions match?," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 1-23.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- repec:hal:journl:hal-04675599 is not listed on IDEAS
- Borup, Daniel & Rapach, David E. & Schütte, Erik Christian Montes, 2023. "Mixed-frequency machine learning: Nowcasting and backcasting weekly initial claims with daily internet search volume data," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1122-1144.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2020. "Googling Unemployment During the Pandemic: Inference and Nowcast Using Search Data," JRC Working Papers in Economics and Finance 2020-04, Joint Research Centre, European Commission.
- van der Wielen, Wouter & Barrios, Salvador, 2021.
"Economic sentiment during the COVID pandemic: Evidence from search behaviour in the EU,"
Journal of Economics and Business, Elsevier, vol. 115(C).
- VAN DER WIELEN Wouter & BARRIOS Salvador, 2020. "Fear and Employment During the COVID Pandemic: Evidence from Search Behaviour in the EU," JRC Working Papers on Taxation & Structural Reforms 2020-08, Joint Research Centre.
- Götz, Thomas B. & Knetsch, Thomas A., 2019.
"Google data in bridge equation models for German GDP,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
- Götz, Thomas B. & Knetsch, Thomas A., 2017. "Google data in bridge equation models for German GDP," Discussion Papers 18/2017, Deutsche Bundesbank.
- Abay,Kibrom A. & Hirfrfot,Kibrom Tafere & Woldemichael,Andinet, 2020. "Winners and Losers from COVID-19 : Global Evidence from Google Search," Policy Research Working Paper Series 9268, The World Bank.
- David Kohns & Arnab Bhattacharjee, 2020.
"Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model,"
Papers
2011.00938, arXiv.org, revised May 2022.
- Bhattacharjee, Arnab & Kohns, David, 2022. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," National Institute of Economic and Social Research (NIESR) Discussion Papers 538, National Institute of Economic and Social Research.
- Siliverstovs, Boriss & Wochner, Daniel S., 2018. "Google Trends and reality: Do the proportions match?," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 1-23.
- Anastasiou, Dimitrios & Bragoudakis, Zacharias & Giannoulakis, Stelios, 2021.
"Perceived vs actual financial crisis and bank credit standards: Is there any indication of self-fulfilling prophecy?,"
Research in International Business and Finance, Elsevier, vol. 58(C).
- Dimitrios Anastasiou & Zacharias Bragoudakis & Stelios Giannoulakis, 2020. "Perceived vs actual financial crisis and bank credit standards: is there any indication of self-fulfilling prophecy?," Working Papers 277, Bank of Greece.
- Kohns, David & Bhattacharjee, Arnab, 2023. "Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
- Rodrigo Mulero & Alfredo García-Hiernaux, 2021. "Forecasting Spanish unemployment with Google Trends and dimension reduction techniques," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(3), pages 329-349, September.
- Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
- Gutiérrez, Antonio, 2023. "La brecha de género en el emprendimiento y la cultura emprendedora: Evidencia con Google Trends [Entrepreneurship gender gap and entrepreneurial culture: Evidence from Google Trends]," MPRA Paper 115876, University Library of Munich, Germany.
- Tuhkuri, Joonas, 2016. "Forecasting Unemployment with Google Searches," ETLA Working Papers 35, The Research Institute of the Finnish Economy.
- Benedikt Maas, 2020.
"Short‐term forecasting of the US unemployment rate,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 394-411, April.
- Maas, Benedikt, 2019. "Short-term forecasting of the US unemployment rate," MPRA Paper 94066, University Library of Munich, Germany.
- Schaer, Oliver & Kourentzes, Nikolaos & Fildes, Robert, 2019. "Demand forecasting with user-generated online information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 197-212.
- Daniel Borup & Erik Christian Montes Schütte, 2022.
"In Search of a Job: Forecasting Employment Growth Using Google Trends,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 186-200, January.
- Daniel Borup & Erik Christian Montes Schütte, 2019. "In search of a job: Forecasting employment growth using Google Trends," CREATES Research Papers 2019-13, Department of Economics and Business Economics, Aarhus University.
- Vera Z. Eichenauer & Ronald Indergand & Isabel Z. Martínez & Christoph Sax, 2022. "Obtaining consistent time series from Google Trends," Economic Inquiry, Western Economic Association International, vol. 60(2), pages 694-705, April.
- Maria Elena Bontempi & Michele Frigeri & Roberto Golinelli & Matteo Squadrani, 2021. "EURQ: A New Web Search‐based Uncertainty Index," Economica, London School of Economics and Political Science, vol. 88(352), pages 969-1015, October.
- Anastasiou, Dimitrios & Drakos, Konstantinos, 2021. "European depositors’ behavior and crisis sentiment," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 117-136.
- Daniel Borup & David E. Rapach & Erik Christian Montes Schütte, 2021. "Now- and Backcasting Initial Claims with High-Dimensional Daily Internet Search-Volume Data," CREATES Research Papers 2021-02, Department of Economics and Business Economics, Aarhus University.
- Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
More about this item
Keywords
Unemployment; Nowcast; Random forest; Covid-19; Google trends; Difference-in-Differences;All these keywords.
JEL classification:
- E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:labeco:v:74:y:2022:i:c:s0927537121001329. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/labeco .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.