Aggregating Google Trends: Multivariate Testing and Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008.
"Nowcasting: The real-time informational content of macroeconomic data,"
Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
- Francisca Beer & Fabrice Hervé & Mohamed Zouaoui, 2013.
"Is Big Brother Watching Us? Google, Investor Sentiment and the Stock Market,"
Economics Bulletin, AccessEcon, vol. 33(1), pages 454-466.
- Francisca Beer & Fabrice Hervé & Mohamed Zouaoui, 2013. "Is Big Brother Watching Us? Google, Investor Sentiment and the Stock Market," Post-Print hal-01346763, HAL.
- McLaren, Nick & Shanbhogue, Rachana, 2011. "Using internet search data as economic indicators," Bank of England Quarterly Bulletin, Bank of England, vol. 51(2), pages 134-140.
- Simeon Vosen & Torsten Schmidt, 2011.
"Forecasting private consumption: survey‐based indicators vs. Google trends,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
- Schmidt, Torsten & Vosen, Simeon, 2009. "Forecasting Private Consumption: Survey-based Indicators vs. Google Trends," Ruhr Economic Papers 155, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Liwen Vaughan & Yue Chen, 2015. "Data mining from web search queries: A comparison of google trends and baidu index," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(1), pages 13-22, January.
- Chris Hand & Guy Judge, 2012. "Searching for the picture: forecasting UK cinema admissions using Google Trends data," Applied Economics Letters, Taylor & Francis Journals, vol. 19(11), pages 1051-1055, July.
- Montero, Pablo & Vilar, José A., 2014. "TSclust: An R Package for Time Series Clustering," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i01).
- Sigrid A Troelstra & Jizzo R Bosdriesz & Michiel R de Boer & Anton E Kunst, 2016. "Effect of Tobacco Control Policies on Information Seeking for Smoking Cessation in the Netherlands: A Google Trends Study," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-16, February.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005.
"Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases,"
CEPR Discussion Papers
5178, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David H., 2006. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Working Paper Series 633, European Central Bank.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Tao Chen & Erin Pik Ki So & Liang Wu & Isabel Kit Ming Yan, 2015. "The 2007–2008 U.S. Recession: What Did The Real-Time Google Trends Data Tell The United States?," Contemporary Economic Policy, Western Economic Association International, vol. 33(2), pages 395-403, April.
- Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rodrigo Mulero & Alfredo Garcia-Hiernaux, 2023. "Forecasting unemployment with Google Trends: age, gender and digital divide," Empirical Economics, Springer, vol. 65(2), pages 587-605, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- France, Stephen L. & Shi, Yuying & Kazandjian, Brett, 2021. "Web Trends: A valuable tool for business research," Journal of Business Research, Elsevier, vol. 132(C), pages 666-679.
- Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
- Benedikt Maas, 2020.
"Short‐term forecasting of the US unemployment rate,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 394-411, April.
- Maas, Benedikt, 2019. "Short-term forecasting of the US unemployment rate," MPRA Paper 94066, University Library of Munich, Germany.
- Zhongchen Song & Tom Coupé, 2023.
"Predicting Chinese consumption series with Baidu,"
Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(3), pages 429-463, July.
- Zhongchen Song & Tom Coupé, 2022. "Predicting Chinese consumption series with Baidu," Working Papers in Economics 22/19, University of Canterbury, Department of Economics and Finance.
- Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
- Schaer, Oliver & Kourentzes, Nikolaos & Fildes, Robert, 2019. "Demand forecasting with user-generated online information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 197-212.
- Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
- van der Wielen, Wouter & Barrios, Salvador, 2021.
"Economic sentiment during the COVID pandemic: Evidence from search behaviour in the EU,"
Journal of Economics and Business, Elsevier, vol. 115(C).
- VAN DER WIELEN Wouter & BARRIOS Salvador, 2020. "Fear and Employment During the COVID Pandemic: Evidence from Search Behaviour in the EU," JRC Working Papers on Taxation & Structural Reforms 2020-08, Joint Research Centre.
- Tuhkuri, Joonas, 2016. "ETLAnow: A Model for Forecasting with Big Data – Forecasting Unemployment with Google Searches in Europe," ETLA Reports 54, The Research Institute of the Finnish Economy.
- Jean-Charles Bricongne & Baptiste Meunier & Raquel Caldeira, 2024. "Should Central Banks Care About Text Mining? A Literature Review," Working papers 950, Banque de France.
- Pirschel, Inske, 2016. "Forecasting euro area recessions in real-time," Kiel Working Papers 2020, Kiel Institute for the World Economy (IfW Kiel).
- Chien-jung Ting & Yi-Long Hsiao, 2022. "Nowcasting the GDP in Taiwan and the Real-Time Tourism Data," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 12(3), pages 1-2.
- Nikolaos Askitas & Klaus F. Zimmermann, 2015.
"The internet as a data source for advancement in social sciences,"
International Journal of Manpower, Emerald Group Publishing Limited, vol. 36(1), pages 2-12, April.
- Nikolaos Askitas & Klaus F. Zimmermann, 2015. "The Internet as a Data Source for Advancement in Social Sciences," RatSWD Working Papers 248, German Data Forum (RatSWD).
- Askitas, Nikos & Zimmermann, Klaus F., 2015. "The Internet as a Data Source for Advancement in Social Sciences," IZA Discussion Papers 8899, Institute of Labor Economics (IZA).
- Götz, Thomas B. & Knetsch, Thomas A., 2019.
"Google data in bridge equation models for German GDP,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
- Götz, Thomas B. & Knetsch, Thomas A., 2017. "Google data in bridge equation models for German GDP," Discussion Papers 18/2017, Deutsche Bundesbank.
- Imene Ben El Hadj Said & Skander Slim, 2022. "The Dynamic Relationship between Investor Attention and Stock Market Volatility: International Evidence," JRFM, MDPI, vol. 15(2), pages 1-25, February.
- Daniel Aaronson & Scott A. Brave & R. Andrew Butters & Daniel Sacks & Boyoung Seo, 2020.
"Using the Eye of the Storm to Predict the Wave of Covid-19 UI Claims,"
Working Paper Series
WP-2020-10, Federal Reserve Bank of Chicago, revised 16 Apr 2020.
- Daniel Aaronson & Scott A. Brave & R. Andrew Butters & Daniel W. Sacks & Boyoung Seo, 2020. "Using the Eye of the Storm to Predict the Wave of Covid-19 UI Claims," Working Paper Series WP 2020-10, Federal Reserve Bank of Chicago.
- Fondeur, Y. & Karamé, F., 2013.
"Can Google data help predict French youth unemployment?,"
Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
- Frédéric Karamé & Yannick Fondeur, 2012. "Can Google Data Help Predict French Youth Unemployment?," Documents de recherche 12-03, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
- Y. Fondeur & F. Karamé, 2013. "Can Google data help predict French youth unemployment?," Post-Print hal-02297071, HAL.
- Philippe Wanner, 2021. "How well can we estimate immigration trends using Google data?," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(4), pages 1181-1202, August.
- Chien-jung Ting & Yi-Long Hsiao & Rui-jun Su, 2022. "Application of the Real-Time Tourism Data in Nowcasting the Service Consumption in Taiwan," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(4), pages 1-4.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2017-12-18 (Big Data)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1712.03152. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.