IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v32y2013i4p289-298.html
   My bibliography  Save this article

Nowcasting with Google Trends in an Emerging Market

Author

Listed:
  • Yan Carrière‐Swallow
  • Felipe Labbé

Abstract

Most economic variables are released with a lag, making it difficult for policy-makers to make an accurate assessment of current conditions. This paper explores whether observing Internet browsing habits can inform practitioners about real-time aggregate consumer behavior in an emerging market. Using data on Google search queries, we introduce a simple index of interest in automobile purchases in Chile and test whether it improves the fit and efficiency of nowcasting models for automobile sales. We also examine to what extent our index helps us identify turning points in sales data. Despite relatively low rates of Internet usage among the population, we find that models incorporating our Google Trends Automotive Index outperform benchmark specifications in both in-sample and outof- sample nowcasts while providing substantial gains in information delivery times.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Yan Carrière‐Swallow & Felipe Labbé, 2013. "Nowcasting with Google Trends in an Emerging Market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(4), pages 289-298, July.
  • Handle: RePEc:wly:jforec:v:32:y:2013:i:4:p:289-298
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    2. Henriksson, Roy D & Merton, Robert C, 1981. "On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting Skills," The Journal of Business, University of Chicago Press, vol. 54(4), pages 513-533, October.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Tanya Suhoy, 2009. "Query Indices and a 2008 Downturn: Israeli Data," Bank of Israel Working Papers 2009.06, Bank of Israel.
    5. Simeon Vosen & Torsten Schmidt, 2011. "Forecasting private consumption: survey‐based indicators vs. Google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
    6. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    7. Trefler, Daniel, 1995. "The Case of the Missing Trade and Other Mysteries," American Economic Review, American Economic Association, vol. 85(5), pages 1029-1046, December.
    8. Ashley, R & Granger, C W J & Schmalensee, R, 1980. "Advertising and Aggregate Consumption: An Analysis of Causality," Econometrica, Econometric Society, vol. 48(5), pages 1149-1167, July.
    9. Shiu-Sheng Chen, 2005. "A note on in-sample and out-of-sample tests for Granger causality," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 453-464.
    10. Della Penna, Nicolas & Huang, Haifang, 2009. "Constructing Consumer Sentiment Index for U.S. Using Google Searches," Working Papers 2009-26, University of Alberta, Department of Economics, revised 01 Feb 2010.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    2. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    3. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    4. Richard A. Ashley & Kwok Ping Tsang, 2014. "Credible Granger-Causality Inference with Modest Sample Lengths: A Cross-Sample Validation Approach," Econometrics, MDPI, vol. 2(1), pages 1-20, March.
    5. Kirstin Hubrich & Kenneth D. West, 2010. "Forecast evaluation of small nested model sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 574-594.
    6. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    7. Brooks, Chris & Burke, Simon P. & Stanescu, Silvia, 2016. "Finite sample weighting of recursive forecast errors," International Journal of Forecasting, Elsevier, vol. 32(2), pages 458-474.
    8. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
    9. Sousa, Ricardo M. & Vivian, Andrew & Wohar, Mark E., 2016. "Predicting asset returns in the BRICS: The role of macroeconomic and fundamental predictors," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 122-143.
    10. Tae-Hwy Lee & Ekaterina Seregina & Yaojue Xu, 2023. "Elicitability and Encompassing for Volatility Forecasts by Bregman Functions," Working Papers 202311, University of California at Riverside, Department of Economics.
    11. Arabinda Basistha & Richard Startz, 2024. "Measuring persistent global economic factors with output, commodity price, and commodity currency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2860-2885, November.
    12. Ubilava, David, 2019. "On The Relationship Between Financial Instability And Economic Performance: Stressing The Business Of Nonlinear Modeling," Macroeconomic Dynamics, Cambridge University Press, vol. 23(1), pages 80-100, January.
    13. Gary J. Cornwall & Jeffrey A. Mills & Beau A. Sauley & Huibin Weng, 2019. "Predictive Testing for Granger Causality via Posterior Simulation and Cross-validation," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 275-292, Emerald Group Publishing Limited.
    14. Granziera, Eleonora & Hubrich, Kirstin & Moon, Hyungsik Roger, 2014. "A predictability test for a small number of nested models," Journal of Econometrics, Elsevier, vol. 182(1), pages 174-185.
    15. Nicolás Magner & Nicolás Hardy, 2022. "Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle," Mathematics, MDPI, vol. 10(13), pages 1-27, July.
    16. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    17. Yang, Zihui & Zhao, Yongliang, 2014. "Energy consumption, carbon emissions, and economic growth in India: Evidence from directed acyclic graphs," Economic Modelling, Elsevier, vol. 38(C), pages 533-540.
    18. Richard A. Ashley & Christopher F. Parmeter, 2013. "Sensitivity Analysis of Inference in GMM Estimation With Possibly-Flawed Moment Conditions," Working Papers e07-40, Virginia Polytechnic Institute and State University, Department of Economics.
    19. Ciner, Cetin, 2017. "Predicting white metal prices by a commodity sensitive exchange rate," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 309-315.
    20. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:32:y:2013:i:4:p:289-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.