IDEAS home Printed from https://ideas.repec.org/a/eee/juecon/v96y2016icp91-111.html
   My bibliography  Save this article

Mortgage default risk: New evidence from internet search queries

Author

Listed:
  • Chauvet, Marcelle
  • Gabriel, Stuart
  • Lutz, Chandler

Abstract

We use Google search query data to develop a broad-based and real-time index of mortgage default risk. Unlike established indicators, our Mortgage Default Risk Index (MDRI) directly reflects households’concerns regarding their risk of mortgage default. The MDRI predicts housing returns, mortgage delinquency indicators, and subprime credit default swaps. These results persist both in- and out-of-sample and at multiple data frequencies. Together, research findings suggest internet search queries yield valuable new insights into household mortgage default risk.

Suggested Citation

  • Chauvet, Marcelle & Gabriel, Stuart & Lutz, Chandler, 2016. "Mortgage default risk: New evidence from internet search queries," Journal of Urban Economics, Elsevier, vol. 96(C), pages 91-111.
  • Handle: RePEc:eee:juecon:v:96:y:2016:i:c:p:91-111
    DOI: 10.1016/j.jue.2016.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0094119016300419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jue.2016.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elliot Anenberg & Edward Kung, 2014. "Estimates of the Size and Source of Price Declines Due to Nearby Foreclosures," American Economic Review, American Economic Association, vol. 104(8), pages 2527-2551, August.
    2. Aron, Janine & Muellbauer, John, 2016. "“Modelling and forecasting mortgage delinquency and foreclosure in the UK.”," Journal of Urban Economics, Elsevier, vol. 94(C), pages 32-53.
    3. Greg Tkacz, 2013. "Predicting Recessions in Real-Time: Mining Google Trends and Electronic Payments Data for Clues," C.D. Howe Institute Commentary, C.D. Howe Institute, issue 387, September.
    4. Gerardi, Kristopher & Rosenblatt, Eric & Willen, Paul S. & Yao, Vincent, 2015. "Foreclosure externalities: New evidence," Journal of Urban Economics, Elsevier, vol. 87(C), pages 42-56.
    5. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    6. Case, Karl E & Shiller, Robert J, 1989. "The Efficiency of the Market for Single-Family Homes," American Economic Review, American Economic Association, vol. 79(1), pages 125-137, March.
    7. Lambie-Hanson, Lauren, 2015. "When does delinquency result in neglect? Mortgage distress and property maintenance," Journal of Urban Economics, Elsevier, vol. 90(C), pages 1-16.
    8. Chan, Sewin & Gedal, Michael & Been, Vicki & Haughwout, Andrew, 2013. "The role of neighborhood characteristics in mortgage default risk: Evidence from New York City," Journal of Housing Economics, Elsevier, vol. 22(2), pages 100-118.
    9. Bricker, Jesse & Bucks, Brian, 2016. "Negative home equity, economic insecurity, and household mobility over the Great Recession," Journal of Urban Economics, Elsevier, vol. 91(C), pages 1-12.
    10. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    11. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    12. Simeon Vosen & Torsten Schmidt, 2011. "Forecasting private consumption: survey‐based indicators vs. Google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
    13. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    14. Ronel Elul & Nicholas S. Souleles & Souphala Chomsisengphet & Dennis Glennon & Robert Hunt, 2010. "What "Triggers" Mortgage Default?," American Economic Review, American Economic Association, vol. 100(2), pages 490-494, May.
    15. Gyourko, Joseph & Tracy, Joseph, 2014. "Reconciling theory and empirics on the role of unemployment in mortgage default," Journal of Urban Economics, Elsevier, vol. 80(C), pages 87-96.
    16. Jonathan H. Wright, 2012. "What does Monetary Policy do to Long‐term Interest Rates at the Zero Lower Bound?," Economic Journal, Royal Economic Society, vol. 122(564), pages 447-466, November.
    17. Eli Beracha & M. Babajide Wintoki, 2013. "Forecasting Residential Real Estate Price Changes from Online Search Activity," Journal of Real Estate Research, American Real Estate Society, vol. 35(3), pages 283-312.
    18. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    19. Neil Bhutta & Jane K. Dokko & Hui Shan, 2010. "The depth of negative equity and mortgage default decisions," Finance and Economics Discussion Series 2010-35, Board of Governors of the Federal Reserve System (U.S.).
    20. Castle, Jennifer L. & Fawcett, Nicholas W.P. & Hendry, David F., 2009. "Nowcasting is not Just Contemporaneous Forecasting," National Institute Economic Review, National Institute of Economic and Social Research, vol. 210, pages 71-89, October.
    21. Mondria, Jordi & Wu, Thomas & Zhang, Yi, 2010. "The determinants of international investment and attention allocation: Using internet search query data," Journal of International Economics, Elsevier, vol. 82(1), pages 85-95, September.
    22. Zhi Da & Joseph Engelberg & Pengjie Gao, 2015. "Editor's Choice The Sum of All FEARS Investor Sentiment and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 1-32.
    23. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    24. Longstaff, Francis A., 2010. "The subprime credit crisis and contagion in financial markets," Journal of Financial Economics, Elsevier, vol. 97(3), pages 436-450, September.
    25. Crocker H. Liu & Adam Nowak & Stuart Rosenthal, 2014. "Bubbles, Post-Crash Dynamics, and the Housing Market," Working Papers 14-18, Department of Economics, West Virginia University.
    26. Foote, Christopher L. & Gerardi, Kristopher & Willen, Paul S., 2008. "Negative equity and foreclosure: Theory and evidence," Journal of Urban Economics, Elsevier, vol. 64(2), pages 234-245, September.
    27. Scott Baker & Andrey Fradkin, 2011. "What Drives Job Search? Evidence from Google Search Data," Discussion Papers 10-020, Stanford Institute for Economic Policy Research.
    28. Lawrence R. Cordell & Yilin Huang & Meredith Williams, 2011. "Collateral damage: Sizing and assessing the subprime CDO crisis," Working Papers 11-30, Federal Reserve Bank of Philadelphia.
    29. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    30. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    31. Gregory DeCoster & William Strange, 2012. "Developers, Herding, and Overbuilding," The Journal of Real Estate Finance and Economics, Springer, vol. 44(1), pages 7-35, January.
    32. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehmet Balcilar & Elie Bouri & Rangan Gupta & Mark E. Wohar, 2020. "Mortgage Default Risks and High-Frequency Predictability of the U.S. Housing Market: A Reconsideration," Journal of Real Estate Portfolio Management, Taylor & Francis Journals, vol. 26(2), pages 111-117, December.
    2. Xudong An & Stuart A. Gabriel & Nitzan Tzur-Ilan, 2022. "More Than Shelter: The Effects of Rental Eviction Moratoria on Household Well-Being," Working Papers 22-10, Federal Reserve Bank of Philadelphia.
    3. Damian S. Damianov & Diego Escobari, 2021. "Getting on and Moving Up the Property Ladder: Real Hedging in the U.S. Housing Market Before and After the Crisis," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 49(4), pages 1201-1237, December.
    4. Qadan, Mahmoud & Zoua’bi, Maher, 2019. "Financial attention and the demand for information," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 82(C).
    5. Bouras, Christos & Christou, Christina & Gupta, Rangan & Lesame, Keagile, 2023. "Forecasting state- and MSA-level housing returns of the US: The role of mortgage default risks," Research in International Business and Finance, Elsevier, vol. 65(C).
    6. González-Fernández, Marcos & Trujillo, Francisco José Sáez & González-Velasco, Carmen, 2024. "Fixed vs. adjustable-rate mortgages and attention," Finance Research Letters, Elsevier, vol. 62(PA).
    7. Rivera-Castro, Miguel A. & Ugolini, Andrea & Arismendi Zambrano, Juan, 2018. "Tail systemic risk and contagion: Evidence from the Brazilian and Latin America banking network," Emerging Markets Review, Elsevier, vol. 35(C), pages 164-189.
    8. Damian Damianov & Cheng Yan & Xiangdong Wang, 2018. "Measures of mortgage default risk and local house price dynamics ," ERES eres2018_163, European Real Estate Society (ERES).
    9. Lazarov, Vladimir & Hinterschweiger, Marc, 2018. "Determinants of distress in the UK owner-occupier and buy-to-let mortgage markets," Bank of England working papers 760, Bank of England.
    10. Ahlfeldt, Gabriel M. & Barr, Jason, 2022. "Viewing urban spatial history from tall buildings," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    11. Massimiliano Marcellino & Dalibor Stevanovic, 2022. "The demand and supply of information about inflation," CIRANO Working Papers 2022s-27, CIRANO.
    12. Ji, Qiang & Gupta, Rangan & Bekun, Festus Victor & Balcilar, Mehmet, 2019. "Spillover of mortgage default risks in the United States: Evidence from metropolitan statistical areas and states," The Journal of Economic Asymmetries, Elsevier, vol. 19(C), pages 1-1.
    13. Simon Oehler, 2019. "Developments in the residential mortgage market in Germany – what can Google data tell us?," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Are post-crisis statistical initiatives completed?, volume 49, Bank for International Settlements.
    14. Mikhail Stolbov & Maria Shchepeleva, 2023. "Sentiment-based indicators of real estate market stress and systemic risk: international evidence," Annals of Finance, Springer, vol. 19(3), pages 355-382, September.
    15. Elster, Yael & Zussman, Asaf & Zussman, Noam, 2017. "Rockets: The housing market effects of a credible terrorist threat," Journal of Urban Economics, Elsevier, vol. 99(C), pages 136-147.
    16. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
    17. David Coble & Pablo Pincheira, 2021. "Forecasting building permits with Google Trends," Empirical Economics, Springer, vol. 61(6), pages 3315-3345, December.
    18. Shulin Shen & Yiyi Zhao & Jindong Pang, 2024. "Local Housing Market Sentiments and Returns: Evidence from China," The Journal of Real Estate Finance and Economics, Springer, vol. 68(3), pages 488-522, April.
    19. Stuart Gabriel & Matteo Iacoviello & Chandler Lutz, 2021. "A Crisis of Missed Opportunities? Foreclosure Costs and Mortgage Modification During the Great Recession [Synthetic control methods for comparative case studies: Estimating the effect of California," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 864-906.
    20. Su, Chi-Wei & Cai, Xu-Yu & Qin, Meng & Tao, Ran & Umar, Muhammad, 2021. "Can bank credit withstand falling house price in China?," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 257-267.
    21. Damian S. Damianov & Xiangdong Wang & Cheng Yan, 2021. "Google Search Queries, Foreclosures, and House Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 63(2), pages 177-209, August.
    22. Ramya Rajajagadeesan Aroul & Sanjiv Sabherwal & Sergiy Saydometov, 2022. "FEAR Index, city characteristics, and housing returns," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 50(1), pages 173-205, March.
    23. Su-Chen Yu & Kuang-Hsun Shih, 2021. "Financial Market Reaction to Patent Lawsuits against Integrated Circuit Design Companies," JRFM, MDPI, vol. 14(9), pages 1-16, September.
    24. Wei‐Fong Pan & James Reade & Shixuan Wang, 2022. "Measuring US regional economic uncertainty," Journal of Regional Science, Wiley Blackwell, vol. 62(4), pages 1149-1178, September.
    25. Jung, Alexander, 2023. "Are monetary policy shocks causal to bank health? Evidence from the euro area," Journal of Macroeconomics, Elsevier, vol. 75(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
    2. Ramya Rajajagadeesan Aroul & Sanjiv Sabherwal & Sergiy Saydometov, 2022. "FEAR Index, city characteristics, and housing returns," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 50(1), pages 173-205, March.
    3. Sergiy Saydometov & Sanjiv Sabherwal & Ramya Rajajagadeesan Aroul, 2020. "Sentiment and its asymmetric effect on housing returns," Review of Financial Economics, John Wiley & Sons, vol. 38(4), pages 580-600, October.
    4. Stig Vinther Møller & Thomas Pedersen & Erik Christian Montes Schütte & Allan Timmermann, 2024. "Search and Predictability of Prices in the Housing Market," Management Science, INFORMS, vol. 70(1), pages 415-438, January.
    5. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
    6. Jaroslav Pavlicek & Ladislav Kristoufek, 2015. "Nowcasting Unemployment Rates with Google Searches: Evidence from the Visegrad Group Countries," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-11, May.
    7. Konstantinos N. Konstantakis & Despoina Paraskeuopoulou & Panayotis G. Michaelides & Efthymios G. Tsionas, 2021. "Bank deposits and Google searches in a crisis economy: Bayesian non‐linear evidence for Greece (2009–2015)," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5408-5424, October.
    8. Damian S. Damianov & Xiangdong Wang & Cheng Yan, 2021. "Google Search Queries, Foreclosures, and House Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 63(2), pages 177-209, August.
    9. Bouras, Christos & Christou, Christina & Gupta, Rangan & Lesame, Keagile, 2023. "Forecasting state- and MSA-level housing returns of the US: The role of mortgage default risks," Research in International Business and Finance, Elsevier, vol. 65(C).
    10. Jaroslav Pavlicek & Ladislav Kristoufek, 2014. "Can Google searches help nowcast and forecast unemployment rates in the Visegrad Group countries?," Papers 1408.6639, arXiv.org.
    11. John P. Harding & Jing Li & Stuart S. Rosenthal & Xirui Zhang, 2022. "Forced moves and home maintenance: The amplifying effects of mortgage payment burden on underwater homeowners," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 50(2), pages 498-533, June.
    12. David Coble & Pablo Pincheira, 2021. "Forecasting building permits with Google Trends," Empirical Economics, Springer, vol. 61(6), pages 3315-3345, December.
    13. González-Fernández, Marcos & González-Velasco, Carmen, 2020. "A sentiment index to measure sovereign risk using Google data," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 406-418.
    14. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2020. "Googling Unemployment During the Pandemic: Inference and Nowcast Using Search Data," Working Papers 2020-04, Joint Research Centre, European Commission.
    15. Papadamou, Stephanos & Fassas, Athanasios & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2020. "Direct and Indirect Effects of COVID-19 Pandemic on Implied Stock Market Volatility: Evidence from Panel Data Analysis," MPRA Paper 100020, University Library of Munich, Germany.
    16. Bangwayo-Skeete, Prosper F. & Skeete, Ryan W., 2015. "Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach," Tourism Management, Elsevier, vol. 46(C), pages 454-464.
    17. Zongwu Cai & Pixiong Chen, 2022. "New Online Investor Sentiment and Asset Returns," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202216, University of Kansas, Department of Economics, revised Nov 2022.
    18. Daniel Borup & Erik Christian Montes Schütte, 2022. "In Search of a Job: Forecasting Employment Growth Using Google Trends," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 186-200, January.
    19. Livio Fenga, 2020. "Filtering and prediction of noisy and unstable signals: The case of Google Trends data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 281-295, March.
    20. Jichang Dong & Wei Dai & Ying Liu & Lean Yu & Jie Wang, 2019. "Forecasting Chinese Stock Market Prices using Baidu Search Index with a Learning-Based Data Collection Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1605-1629, September.

    More about this item

    Keywords

    Mortgage default risk;

    JEL classification:

    • R30 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - General
    • G02 - Financial Economics - - General - - - Behavioral Finance: Underlying Principles
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juecon:v:96:y:2016:i:c:p:91-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622905 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.