IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v95y2021ics0969699721000661.html
   My bibliography  Save this article

Air passenger forecasting using Neural Granger causal Google trend queries

Author

Listed:
  • Li Long, Chan
  • Guleria, Yash
  • Alam, Sameer

Abstract

Air passenger forecasting provides important insights for both Governments and Aerospace industries to plan their for their future activities. Google Trends can provide a large database of historical search query frequency which can be used as explanatory variables for air passenger forecasting. This paper explores the use of a Neural Granger Causality model to select the best search query that can forecast arrival air passengers in Singapore Changi Airport. Neural Granger Causality models are an extension of the original Granger Causality model that uses neural networks instead of Linear Vector Auto-Regressive (VAR) models to capture non-linear relations between the targets and the tested explanatory variables. In this paper, 1317 Google Trends search queries are tested for Neural Granger Causality of which 171 queries are deemed as Neural Granger Causal for forecasting Singapore Changi Airport monthly arrival passengers. The model that used all 171 Neural Granger Queries achieved the highest R2 value (R2=0.919) with the lowest Standard Deviation (SD=0.363) compared to the other models which was not filtered for Neural Granger Causality. The 171 queries found are search terms that reflects a unidirectional neural granger causal relationship with the number of arrival air passengers at Changi Airport.

Suggested Citation

  • Li Long, Chan & Guleria, Yash & Alam, Sameer, 2021. "Air passenger forecasting using Neural Granger causal Google trend queries," Journal of Air Transport Management, Elsevier, vol. 95(C).
  • Handle: RePEc:eee:jaitra:v:95:y:2021:i:c:s0969699721000661
    DOI: 10.1016/j.jairtraman.2021.102083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699721000661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2021.102083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    2. Sun, Shaolong & Lu, Hongxu & Tsui, Kwok-Leung & Wang, Shouyang, 2019. "Nonlinear vector auto-regression neural network for forecasting air passenger flow," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 54-62.
    3. Sima Siami-Namini & Akbar Siami Namin, 2018. "Forecasting Economics and Financial Time Series: ARIMA vs. LSTM," Papers 1803.06386, arXiv.org.
    4. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    5. Hakim, Md Mahbubul & Merkert, Rico, 2016. "The causal relationship between air transport and economic growth: Empirical evidence from South Asia," Journal of Transport Geography, Elsevier, vol. 56(C), pages 120-127.
    6. Simeon Vosen & Torsten Schmidt, 2011. "Forecasting private consumption: survey‐based indicators vs. Google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
    7. Elton Fernandes & Ricardo Rodrigues Pacheco, 2010. "The causal relationship between GDP and domestic air passenger traffic in Brazil," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(7), pages 569-581, July.
    8. Baker, Douglas & Merkert, Rico & Kamruzzaman, Md., 2015. "Regional aviation and economic growth: cointegration and causality analysis in Australia," Journal of Transport Geography, Elsevier, vol. 43(C), pages 140-150.
    9. Shu-Chuan Chen & Shih-Yao Kuo & Kuo-Wei Chang & Yi-Ting Wang, 2012. "Improving the forecasting accuracy of air passenger and air cargo demand: the application of back-propagation neural networks," Transportation Planning and Technology, Taylor & Francis Journals, vol. 35(3), pages 373-392, April.
    10. Grosche, Tobias & Rothlauf, Franz & Heinzl, Armin, 2007. "Gravity models for airline passenger volume estimation," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 175-183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    2. Ari, Didem & Mizrak Ozfirat, Pinar, 2024. "Comparison of artificial neural networks and regression analysis for airway passenger estimation," Journal of Air Transport Management, Elsevier, vol. 115(C).
    3. Wang, Lu & Ruan, Hang & Hong, Yanran & Luo, Keyu, 2023. "Detecting the hidden asymmetric relationship between crude oil and the US dollar: A novel neural Granger causality method," Research in International Business and Finance, Elsevier, vol. 64(C).
    4. Liang, Xiaozhen & Hong, Chenxi & Chen, Jiaqi & Wang, Yingying & Yang, Mingge, 2024. "A hybrid forecasting architecture for air passenger demand considering search engine data and spatial effect," Journal of Air Transport Management, Elsevier, vol. 118(C).
    5. Bełej Mirosław, 2024. "Exploring Public Interest in Limited-Use Areas and Compensation from Airports in Poland: A Google Trends Analysis," Real Estate Management and Valuation, Sciendo, vol. 32(3), pages 64-76.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Sen & Gao, Yi, 2021. "A literature review and citation analyses of air travel demand studies published between 2010 and 2020," Journal of Air Transport Management, Elsevier, vol. 97(C).
    2. Jin, Feng & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2020. "Forecasting air passenger demand with a new hybrid ensemble approach," Journal of Air Transport Management, Elsevier, vol. 83(C).
    3. Gizem Kaya & Umut Aydın & Burç Ülengin, 2023. "A Comparison of Forecasting Performance of PPML and OLS estimators: The Gravity Model in the Air Cargo Market," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(39), pages 112-128, December.
    4. Hanson, Daniel & Toru Delibasi, Tuba & Gatti, Matteo & Cohen, Shamai, 2022. "How do changes in economic activity affect air passenger traffic? The use of state-dependent income elasticities to improve aviation forecasts," Journal of Air Transport Management, Elsevier, vol. 98(C).
    5. Rayaprolu, Hema & Levinson, David, 2024. "Co-evolution of public transport access and ridership," Journal of Transport Geography, Elsevier, vol. 116(C).
    6. Chen, Jieh-Haur & Wei, Hsi-Hsien & Chen, Chih-Lin & Wei, Hsin-Yi & Chen, Yi-Ping & Ye, Zhongnan, 2020. "A practical approach to determining critical macroeconomic factors in air-traffic volume based on K-means clustering and decision-tree classification," Journal of Air Transport Management, Elsevier, vol. 82(C).
    7. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
    8. Elena Cigu & Daniela Tatiana Agheorghiesei & Anca Florentina Gavriluță (Vatamanu) & Elena Toader, 2018. "Transport Infrastructure Development, Public Performance and Long-Run Economic Growth: A Case Study for the Eu-28 Countries," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
    9. Craig A. Depken II & E. Frank Stephenson, 2017. "Copper Theft in the United States," The American Economist, Sage Publications, vol. 62(1), pages 66-76, March.
    10. Yetkiner, Hakan & Beyzatlar, Mehmet Aldonat, 2020. "The Granger-causality between wealth and transportation: A panel data approach," Transport Policy, Elsevier, vol. 97(C), pages 19-25.
    11. Hu, Yi & Xiao, Jin & Deng, Ying & Xiao, Yi & Wang, Shouyang, 2015. "Domestic air passenger traffic and economic growth in China: Evidence from heterogeneous panel models," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 95-100.
    12. Hakim, Md Mahbubul & Merkert, Rico, 2016. "The causal relationship between air transport and economic growth: Empirical evidence from South Asia," Journal of Transport Geography, Elsevier, vol. 56(C), pages 120-127.
    13. Vicente Aprigliano Fernandes & Ricardo R. Pacheco & Elton Fernandes & Manoela Cabo & Rodrigo V. Ventura & Rafael Caixeta, 2021. "Air Transportation, Economy and Causality: Remote Towns in Brazil’s Amazon Region," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    14. Ali, Rafaqet & Bakhsh, Khuda & Yasin, Muhammad Asim, 2023. "Causal nexus between air transportation and economic growth in BRICS countries," Journal of Air Transport Management, Elsevier, vol. 107(C).
    15. Wang, Yanzai & Hao, Chengzhi & Liu, Dawei, 2019. "The spatial and temporal dimensions of the interdependence between the airline industry and the Chinese economy," Journal of Transport Geography, Elsevier, vol. 74(C), pages 201-210.
    16. Xiaowen Fu & Kan Wai Hong Tsui & Breno Sampaio & David Tan, 2021. "Do airport activities affect regional economies? Regional analysis of New Zealand’s airport system," Regional Studies, Taylor & Francis Journals, vol. 55(4), pages 707-722, April.
    17. Dantas, Tiago Mendes & Cyrino Oliveira, Fernando Luiz & Varela Repolho, Hugo Miguel, 2017. "Air transportation demand forecast through Bagging Holt Winters methods," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 116-123.
    18. Tsui, Wai Hong Kan & Fu, Xiaowen & Yin, Chuanzhong & Zhang, Huaxin, 2021. "Hong Kong's aviation and tourism growth - An empirical investigation," Journal of Air Transport Management, Elsevier, vol. 93(C).
    19. Truong, Dothang, 2021. "Estimating the impact of COVID-19 on air travel in the medium and long term using neural network and Monte Carlo simulation," Journal of Air Transport Management, Elsevier, vol. 96(C).
    20. Rahman, Farzana & Rahman, Md. Mahmudur, 2023. "Analyzing service quality of domestic airlines in an emerging country- Bangladesh by structural equation models," Journal of Air Transport Management, Elsevier, vol. 107(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:95:y:2021:i:c:s0969699721000661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.