IDEAS home Printed from https://ideas.repec.org/a/bla/revinw/v68y2022i2p518-540.html
   My bibliography  Save this article

Food Hardship in the US During the Pandemic: What Can We Learn From Real‐Time Data?

Author

Listed:
  • Sara Ayllón
  • Samuel Lado

Abstract

We study the potential effect of the declaration of the state of emergency, the beginning and end of the stay‐at‐home orders, and the one‐off Economic Impact Payments on food hardship in the US during the first wave of the coronavirus pandemic. We use daily data from Google Trends for the search term “foodbank” and document the development of a hunger crisis, as indicated by the number of individuals who need to locate a food pantry through the internet. The demand for charitable food handouts begins to decrease once families start receiving the stimulus payments, but the biggest fall comes when economic activity resumes after the lifting of the lockdown orders. Our estimates indicate that the increased need for emergency help among vulnerable families lasted for at least 10 weeks during the first wave of the pandemic, and we argue that real‐time data can be useful in predicting such urgency.

Suggested Citation

  • Sara Ayllón & Samuel Lado, 2022. "Food Hardship in the US During the Pandemic: What Can We Learn From Real‐Time Data?," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 68(2), pages 518-540, June.
  • Handle: RePEc:bla:revinw:v:68:y:2022:i:2:p:518-540
    DOI: 10.1111/roiw.12564
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/roiw.12564
    Download Restriction: no

    File URL: https://libkey.io/10.1111/roiw.12564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jérôme Adda, 2016. "Economic Activity and the Spread of Viral Diseases: Evidence from High Frequency Data," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(2), pages 891-941.
    2. Scott R. Baker & Andrey Fradkin, 2017. "The Impact of Unemployment Insurance on Job Search: Evidence from Google Search Data," The Review of Economics and Statistics, MIT Press, vol. 99(5), pages 756-768, December.
    3. Yun Qiu & Xi Chen & Wei Shi, 2020. "Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(4), pages 1127-1172, October.
    4. Janet Currie, 2009. "Healthy, Wealthy, and Wise: Socioeconomic Status, Poor Health in Childhood, and Human Capital Development," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 87-122, March.
    5. Cicala, Steve, 2021. "The incidence of extreme economic stress: Evidence from utility disconnections," Journal of Public Economics, Elsevier, vol. 200(C).
    6. Howard, Larry L., 2011. "Does food insecurity at home affect non-cognitive performance at school? A longitudinal analysis of elementary student classroom behavior," Economics of Education Review, Elsevier, vol. 30(1), pages 157-176, February.
    7. Palomino, Juan C. & Rodríguez, Juan G. & Sebastian, Raquel, 2020. "Wage inequality and poverty effects of lockdown and social distancing in Europe," European Economic Review, Elsevier, vol. 129(C).
    8. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    9. Simeon Vosen & Torsten Schmidt, 2011. "Forecasting private consumption: survey‐based indicators vs. Google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
    10. Case, Anne & Fertig, Angela & Paxson, Christina, 2005. "The lasting impact of childhood health and circumstance," Journal of Health Economics, Elsevier, vol. 24(2), pages 365-389, March.
    11. Brandon J. Restrepo & Matthew P. Rabbitt & Christian A. Gregory, 2021. "The Effect of Unemployment on Food Spending and Adequacy: Evidence from Coronavirus‐Induced Firm Closures," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(1), pages 185-204, March.
    12. Ganong, Peter & Noel, Pascal & Vavra, Joseph, 2020. "US unemployment insurance replacement rates during the pandemic," Journal of Public Economics, Elsevier, vol. 191(C).
    13. Kong, Edward & Prinz, Daniel, 2020. "Disentangling policy effects using proxy data: Which shutdown policies affected unemployment during the COVID-19 pandemic?," Journal of Public Economics, Elsevier, vol. 189(C).
    14. Baek, ChaeWon & McCrory, Peter B & Messer, Todd & Mui, Preston, 2020. "Unemployment Effects of Stay-at-Home Orders: Evidence from High Frequency Claims Data," Institute for Research on Labor and Employment, Working Paper Series qt042177j7, Institute of Industrial Relations, UC Berkeley.
    15. Crossley, Thomas F. & Fisher, Paul & Low, Hamish, 2021. "The heterogeneous and regressive consequences of COVID-19: Evidence from high quality panel data," Journal of Public Economics, Elsevier, vol. 193(C).
    16. Jun, Seung-Pyo & Yoo, Hyoung Sun & Choi, San, 2018. "Ten years of research change using Google Trends: From the perspective of big data utilizations and applications," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 69-87.
    17. Caroline Ratcliffe & Signe-Mary McKernan & Sisi Zhang, 2011. "How Much Does the Supplemental Nutrition Assistance Program Reduce Food Insecurity?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(4), pages 1082-1098.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christine Dauth & Julia Lang, 2024. "Continuing vocational training in times of economic uncertainty: an event-study analysis in real time," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 58(1), pages 1-23, December.
    2. Yakubu, Hanan & Kwong, C.K., 2021. "Forecasting the importance of product attributes using online customer reviews and Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    3. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).
    4. Abay, Kibrom A. & Ibrahim, Hosam, 2020. "Winners and losers from COVID-19: Evidence from Google search data for Egypt," MENA policy notes 8, International Food Policy Research Institute (IFPRI).
    5. Juan Camilo Anzoátegui-Zapata & Juan Camilo Galvis-Ciro, 2020. "Disagreements in Consumer Inflation Expectations: Empirical Evidence for a Latin American Economy," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 16(2), pages 99-122, November.
    6. Dorn, Florian & Lange, Berit & Braml, Martin & Gstrein, David & Nyirenda, John L.Z. & Vanella, Patrizio & Winter, Joachim & Fuest, Clemens & Krause, Gérard, 2023. "The challenge of estimating the direct and indirect effects of COVID-19 interventions – Toward an integrated economic and epidemiological approach," Economics & Human Biology, Elsevier, vol. 49(C).
    7. Zhongchen Song & Tom Coupé, 2023. "Predicting Chinese consumption series with Baidu," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(3), pages 429-463, July.
    8. David E. Bloom & Michael Kuhn & Klaus Prettner, 2022. "Modern Infectious Diseases: Macroeconomic Impacts and Policy Responses," Journal of Economic Literature, American Economic Association, vol. 60(1), pages 85-131, March.
    9. Mario J. Crucini & Oscar O'Flaherty, 2020. "Stay-at-Home Orders in a Fiscal Union," NBER Working Papers 28182, National Bureau of Economic Research, Inc.
    10. Emanuele Ciani & Adeline Delavande & Ben Etheridge & Marco Francesconi, 2023. "Policy Uncertainty and Information Flows: Evidence from Pension Reform Expectations," The Economic Journal, Royal Economic Society, vol. 133(649), pages 98-129.
    11. Aaronson, Daniel & Brave, Scott A. & Butters, R. Andrew & Fogarty, Michael & Sacks, Daniel W. & Seo, Boyoung, 2022. "Forecasting unemployment insurance claims in realtime with Google Trends," International Journal of Forecasting, Elsevier, vol. 38(2), pages 567-581.
    12. Akos Horvath & Benjamin S. Kay & Carlo Wix, 2021. "The COVID-19 Shock and Consumer Credit: Evidence from Credit Card Data," Finance and Economics Discussion Series 2021-008, Board of Governors of the Federal Reserve System (U.S.).
    13. Serhan Cevik, 2022. "Where should we go? Internet searches and tourist arrivals," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4048-4057, October.
    14. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2020. "Googling Unemployment During the Pandemic: Inference and Nowcast Using Search Data," Working Papers 2020-04, Joint Research Centre, European Commission.
    15. Sumedha Gupta & Laura Montenovo & Thuy Nguyen & Felipe Lozano‐Rojas & Ian Schmutte & Kosali Simon & Bruce A. Weinberg & Coady Wing, 2023. "Effects of social distancing policy on labor market outcomes," Contemporary Economic Policy, Western Economic Association International, vol. 41(1), pages 166-193, January.
    16. Livio Fenga, 2020. "Filtering and prediction of noisy and unstable signals: The case of Google Trends data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 281-295, March.
    17. Chen, Zhuo & Li, Pengfei & Liao, Li & Liu, Lu & Wang, Zhengwei, 2024. "Assessing and addressing the coronavirus-induced economic crisis: Evidence from 1.5 billion sales invoices," China Economic Review, Elsevier, vol. 85(C).
    18. Tsoyu Calvin Lin & Shih-Hsun Hsu, 2020. "Forecasting Housing Markets from Number of Visits to Actual Price Registration System," International Real Estate Review, Global Social Science Institute, vol. 23(4), pages 505-536.
    19. Jolana Stejskalova, 2023. "We investigated the link between stock returns of automobile companies, Fama French factors, and behavioral attention, represented by demand for a selected car brand belonging to an automobile company," Journal of Economics / Ekonomicky casopis, Institute of Economic Research, Slovak Academy of Sciences, vol. 71(3), pages 202-221, March.
    20. van der Wielen, Wouter & Barrios, Salvador, 2021. "Economic sentiment during the COVID pandemic: Evidence from search behaviour in the EU," Journal of Economics and Business, Elsevier, vol. 115(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:revinw:v:68:y:2022:i:2:p:518-540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/iariwea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.