IDEAS home Printed from https://ideas.repec.org/a/bla/ecinqu/v60y2022i2p694-705.html
   My bibliography  Save this article

Obtaining consistent time series from Google Trends

Author

Listed:
  • Vera Z. Eichenauer
  • Ronald Indergand
  • Isabel Z. Martínez
  • Christoph Sax

Abstract

Google Trends data are a popular data source for research, but raw data are frequency‐inconsistent: daily data fail to capture long‐run trends. This issue has gone unnoticed in the literature. In addition, sampling noise can be substantial. We develop a procedure (available in an R‐package), which solves both issues at once. We apply this procedure to construct long‐run, frequency‐consistent daily economic indices for three German‐speaking countries. The resulting indices are significantly correlated with traditional leading economic indicators while being available in real time. We discuss potential applications across disciplines and spanning well beyond business cycle analysis.

Suggested Citation

  • Vera Z. Eichenauer & Ronald Indergand & Isabel Z. Martínez & Christoph Sax, 2022. "Obtaining consistent time series from Google Trends," Economic Inquiry, Western Economic Association International, vol. 60(2), pages 694-705, April.
  • Handle: RePEc:bla:ecinqu:v:60:y:2022:i:2:p:694-705
    DOI: 10.1111/ecin.13049
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/ecin.13049
    Download Restriction: no

    File URL: https://libkey.io/10.1111/ecin.13049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
    2. Zhi Da & Joseph Engelberg & Pengjie Gao, 2015. "Editor's Choice The Sum of All FEARS Investor Sentiment and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 1-32.
    3. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    4. Pierre Magontier, 2020. "Does media coverage affect governments preparation for natural disasters?," Diskussionsschriften credresearchpaper29, Universitaet Bern, Departement Volkswirtschaft - CRED.
    5. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    6. Jaemin Woo & Ann L. Owen, 2019. "Forecasting private consumption with Google Trends data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(2), pages 81-91, March.
    7. Klaus Abberger & Michael Graff & Boriss Siliverstovs & Jan-Egbert Sturm, 2014. "The KOF Economic Barometer, Version 2014," KOF Working papers 14-353, KOF Swiss Economic Institute, ETH Zurich.
    8. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    9. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    10. Castelnuovo, Efrem & Tran, Trung Duc, 2017. "Google It Up! A Google Trends-based Uncertainty index for the United States and Australia," Economics Letters, Elsevier, vol. 161(C), pages 149-153.
    11. McLaren, Nick & Shanbhogue, Rachana, 2011. "Using internet search data as economic indicators," Bank of England Quarterly Bulletin, Bank of England, vol. 51(2), pages 134-140.
    12. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    13. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
    14. Klaus Neusser, 2016. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-32862-1, July.
    15. Kostopoulos, Dimitrios & Meyer, Steffen & Uhr, Charline, 2020. "Google search volume and individual investor trading," Journal of Financial Markets, Elsevier, vol. 49(C).
    16. C. Douglas Swearingen & Joseph T. Ripberger, 2014. "Google Insights and U.S. Senate Elections: Does Search Traffic Provide a Valid Measure of Public Attention to Political Candidates?," Social Science Quarterly, Southwestern Social Science Association, vol. 95(3), pages 882-893, September.
    17. Thomas Eisensee & David Strömberg, 2007. "News Droughts, News Floods, and U. S. Disaster Relief," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(2), pages 693-728.
    18. Sax, Christoph & Steiner, Peter, 2013. "Temporal Disaggregation of Time Series," MPRA Paper 53389, University Library of Munich, Germany.
    19. Simeon Vosen & Torsten Schmidt, 2011. "Forecasting private consumption: survey‐based indicators vs. Google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
    20. Mr. Futoshi Narita & Rujun Yin, 2018. "In Search of Information: Use of Google Trends’ Data to Narrow Information Gaps for Low-income Developing Countries," IMF Working Papers 2018/286, International Monetary Fund.
    21. Paul Smith, 2016. "Google's MIDAS Touch: Predicting UK Unemployment with Internet Search Data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(3), pages 263-284, April.
    22. Lourenço, Nuno & Rua, António, 2021. "The Daily Economic Indicator: tracking economic activity daily during the lockdown," Economic Modelling, Elsevier, vol. 100(C).
    23. Jun, Seung-Pyo & Yoo, Hyoung Sun & Choi, San, 2018. "Ten years of research change using Google Trends: From the perspective of big data utilizations and applications," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 69-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sugiyama, Yuri, 2022. "Can Soft Law Improve the Welfare of Sexual Minorities? The Case of Same-sex Partnership Policy in Japan," CEI Working Paper Series 2022-06, Center for Economic Institutions, Institute of Economic Research, Hitotsubashi University.
    2. Christine Dauth & Julia Lang, 2024. "Continuing vocational training in times of economic uncertainty: an event-study analysis in real time," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 58(1), pages 1-23, December.
    3. Omid Zamani & Thomas Bittmann & Jens‐Peter Loy, 2024. "Does the internet bring food prices closer together? Exploring search engine query data in Iran," Journal of Agricultural Economics, Wiley Blackwell, vol. 75(2), pages 688-715, June.
    4. Costa, Eduardo André & Silva, Maria Eduarda & Galvão, Ana Beatriz, 2024. "Real-time nowcasting the monthly unemployment rates with daily Google Trends data," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    5. Joshua Ball & Günther G. Schulze & Nikita Zakharov, 2024. "Ain’t no Silver Bullet? Gun Laws and Suicide in the US," Discussion Paper Series 51 JEL Classification: I1, Department of International Economic Policy, University of Freiburg, revised Dec 2024.
    6. Cebrián, Eduardo & Domenech, Josep, 2024. "Addressing Google Trends inconsistencies," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    7. Huaxin Wang-Lu, 2022. "Bitcoin Returns and Public Attention to COVID-19: Do Timing and Individualism Matter?," Papers 2205.04290, arXiv.org, revised Sep 2022.
    8. D'Attoma, Ida & Ieva, Marco, 2024. "A new composite index to assess environmental consciousness using survey data and big data: Empirical evidence from European consumers," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    9. Jessica Bollenbach & Stefan Neubig & Andreas Hein & Robert Keller & Helmut Krcmar, 2024. "Enabling active visitor management: local, short-term occupancy prediction at a touristic point of interest," Information Technology & Tourism, Springer, vol. 26(3), pages 521-552, September.
    10. Jung, Alexander, 2023. "Are monetary policy shocks causal to bank health? Evidence from the euro area," Journal of Macroeconomics, Elsevier, vol. 75(C).
    11. Lolić, Ivana & Matošec, Marina & Sorić, Petar, 2024. "DIY google trends indicators in social sciences: A methodological note," Technology in Society, Elsevier, vol. 77(C).
    12. Simran, & Sharma, Anil Kumar, 2023. "Asymmetric impact of economic policy uncertainty on cryptocurrency market: Evidence from NARDL approach," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    13. Laine, Olli-Matti & Nelimarkka, Jaakko, 2023. "Assessing targeted longer-term refinancing operations: Identification through search intensity," Bank of Finland Research Discussion Papers 13/2023, Bank of Finland.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kohns, David & Bhattacharjee, Arnab, 2023. "Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
    2. Lolić, Ivana & Matošec, Marina & Sorić, Petar, 2024. "DIY google trends indicators in social sciences: A methodological note," Technology in Society, Elsevier, vol. 77(C).
    3. Maria Elena Bontempi & Michele Frigeri & Roberto Golinelli & Matteo Squadrani, 2021. "EURQ: A New Web Search‐based Uncertainty Index," Economica, London School of Economics and Political Science, vol. 88(352), pages 969-1015, October.
    4. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).
    5. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2020. "Googling Unemployment During the Pandemic: Inference and Nowcast Using Search Data," JRC Working Papers in Economics and Finance 2020-04, Joint Research Centre, European Commission.
    6. van der Wielen, Wouter & Barrios, Salvador, 2021. "Economic sentiment during the COVID pandemic: Evidence from search behaviour in the EU," Journal of Economics and Business, Elsevier, vol. 115(C).
    7. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    8. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
    9. Woloszko, Nicolas, 2024. "Nowcasting with panels and alternative data: The OECD weekly tracker," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1302-1335.
    10. Cebrián, Eduardo & Domenech, Josep, 2024. "Addressing Google Trends inconsistencies," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    11. Puhr, Harald & Müllner, Jakob, 2024. "Vox populi, vox dei: A concept and measure for grassroots socio-political risk using Google Trends," Journal of International Management, Elsevier, vol. 30(2).
    12. Fernandez-Perez, Adrian & Fuertes, Ana-Maria & Gonzalez-Fernandez, Marcos & Miffre, Joelle, 2020. "Fear of hazards in commodity futures markets," Journal of Banking & Finance, Elsevier, vol. 119(C).
    13. Donadelli, Michael & Gerotto, Luca, 2019. "Non-macro-based Google searches, uncertainty, and real economic activity," Research in International Business and Finance, Elsevier, vol. 48(C), pages 111-142.
    14. Zhongchen Song & Tom Coupé, 2023. "Predicting Chinese consumption series with Baidu," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(3), pages 429-463, July.
    15. Bantis, Evripidis & Clements, Michael P. & Urquhart, Andrew, 2023. "Forecasting GDP growth rates in the United States and Brazil using Google Trends," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1909-1924.
    16. Benedikt Maas, 2020. "Short‐term forecasting of the US unemployment rate," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 394-411, April.
    17. Aaronson, Daniel & Brave, Scott A. & Butters, R. Andrew & Fogarty, Michael & Sacks, Daniel W. & Seo, Boyoung, 2022. "Forecasting unemployment insurance claims in realtime with Google Trends," International Journal of Forecasting, Elsevier, vol. 38(2), pages 567-581.
    18. Alexander Jaax & Annabelle Mourougane & Frederic Gonzales, 2024. "Nowcasting services trade for the G7 economies," The World Economy, Wiley Blackwell, vol. 47(4), pages 1336-1386, April.
    19. Simran, & Sharma, Anil Kumar, 2023. "Asymmetric impact of economic policy uncertainty on cryptocurrency market: Evidence from NARDL approach," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    20. Szczygielski, Jan Jakub & Charteris, Ailie & Obojska, Lidia & Brzeszczyński, Janusz, 2024. "Capturing the timing of crisis evolution: A machine learning and directional wavelet coherence approach to isolating event-specific uncertainty using Google searches with an application to COVID-19," Technological Forecasting and Social Change, Elsevier, vol. 205(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ecinqu:v:60:y:2022:i:2:p:694-705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/weaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.