My bibliography
Save this item
Policy Learning With Observational Data
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ghysels, Eric & Babii, Andrii & Chen, Xi & Kumar, Rohit, 2020.
"Binary Choice with Asymmetric Loss in a Data-Rich Environment: Theory and an Application to Racial Justice,"
CEPR Discussion Papers
15418, C.E.P.R. Discussion Papers.
- Andrii Babii & Xi Chen & Eric Ghysels & Rohit Kumar, 2020. "Binary Choice with Asymmetric Loss in a Data-Rich Environment: Theory and an Application to Racial Justice," Papers 2010.08463, arXiv.org, revised Nov 2021.
- Manski, Charles F., 2023.
"Probabilistic prediction for binary treatment choice: With focus on personalized medicine,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
- Charles F. Manski, 2021. "Probabilistic Prediction for Binary Treatment Choice: with Focus on Personalized Medicine," NBER Working Papers 29358, National Bureau of Economic Research, Inc.
- Charles F. Manski, 2021. "Probabilistic Prediction for Binary Treatment Choice: with focus on personalized medicine," Papers 2110.00864, arXiv.org.
- Lihua Lei & Roshni Sahoo & Stefan Wager, 2023. "Policy Learning under Biased Sample Selection," Papers 2304.11735, arXiv.org.
- Cordier, J.; & Salvi, I.; & Steinbeck, V.; & Geissler, A.; & Vogel, J.;, 2023. "Is rapid recovery always the best recovery? - Developing a machine learning approach for optimal assignment rules under capacity constraints for knee replacement patients," Health, Econometrics and Data Group (HEDG) Working Papers 23/08, HEDG, c/o Department of Economics, University of York.
- Yi Zhang & Kosuke Imai, 2023. "Individualized Policy Evaluation and Learning under Clustered Network Interference," Papers 2311.02467, arXiv.org, revised Feb 2024.
- Yi Zhang & Eli Ben-Michael & Kosuke Imai, 2022. "Safe Policy Learning under Regression Discontinuity Designs with Multiple Cutoffs," Papers 2208.13323, arXiv.org, revised Sep 2024.
- Vanessa Cirulli & Giuliano Resce & Marco Ventura, 2024.
"Co-payment exemption and healthcare consumption: quasi-experimental evidence from Italy,"
Empirical Economics, Springer, vol. 67(1), pages 355-380, July.
- Vanessa Cirulli & Giuliano Resce & Marco Ventura, 2021. "Co-payment exemption and healthcare consumption. Quasi-experimental evidence from Italy," Working Papers in Public Economics 203, University of Rome La Sapienza, Department of Economics and Law.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2023.
"Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium,"
Labour Economics, Elsevier, vol. 80(C).
- Bart Cockx & Michael Lechner & Joost Bollens, 2019. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Papers 1912.12864, arXiv.org, revised Dec 2022.
- Bart Cockx & Michael Lechner & Joost Bollens, 2020. "Priority of Unemployed Immigrants? A Causal Machine Learning Evaluation of Training in Belgium," CESifo Working Paper Series 8297, CESifo.
- Bart Cockx & Michael Lechner & Joost Bollens, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 20/998, Ghent University, Faculty of Economics and Business Administration.
- Lechner, Michael & Cockx, Bart & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," CEPR Discussion Papers 14270, C.E.P.R. Discussion Papers.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," ROA Research Memorandum 006, Maastricht University, Research Centre for Education and the Labour Market (ROA).
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Research Memorandum 015, Maastricht University, Graduate School of Business and Economics (GSBE).
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Economics Working Paper Series 2001, University of St. Gallen, School of Economics and Political Science.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2019. "Priority to Unemployed Immigrants? A Causal Machine Learning Evaluation of Training in Belgium," IZA Discussion Papers 12875, Institute of Labor Economics (IZA).
- Bart Cockx & Michael Lechner & Joost Bollens, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," LIDAM Discussion Papers IRES 2020016, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
- Athey, Susan & Palikot, Emil, 2022.
"Effective and Scalable Programs to Facilitate Labor Market Transitions for Women in Technology,"
Research Papers
4063, Stanford University, Graduate School of Business.
- Susan Athey & Emil Palikot, 2022. "Effective and scalable programs to facilitate labor market transitions for women in technology," Papers 2211.09968, arXiv.org, revised Jan 2024.
- Vira Semenova, 2023. "Aggregated Intersection Bounds and Aggregated Minimax Values," Papers 2303.00982, arXiv.org, revised Jun 2024.
- Aldo Gael Carranza & Susan Athey, 2023.
"Federated Offline Policy Learning,"
Papers
2305.12407, arXiv.org, revised Oct 2024.
- Carranza, Aldo Gael & Athey, Susan, 2024. "Federated Offline Policy Learning," Research Papers 4215, Stanford University, Graduate School of Business.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022.
"Urban economics in a historical perspective: Recovering data with machine learning,"
Regional Science and Urban Economics, Elsevier, vol. 94(C).
- Gobillon, Laurent & Combes, Pierre-Philippe & Zylberberg, Yanos, 2020. "Urban economics in a historical perspective: Recovering data with machine learning," CEPR Discussion Papers 15308, C.E.P.R. Discussion Papers.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2021. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," IZA Discussion Papers 14392, Institute of Labor Economics (IZA).
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," PSE-Ecole d'économie de Paris (Postprint) halshs-03673240, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," Post-Print halshs-03673240, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," PSE Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," SciencePo Working papers Main halshs-03673240, HAL.
- Olga Takács & János Vincze, 2023. "Heterogeneous wage structure effects: a partial European East-West comparison," CERS-IE WORKING PAPERS 2305, Institute of Economics, Centre for Economic and Regional Studies.
- Alejandro Sanchez-Becerra, 2023. "Robust inference for the treatment effect variance in experiments using machine learning," Papers 2306.03363, arXiv.org.
- Alex Chin & Dean Eckles & Johan Ugander, 2022. "Evaluating Stochastic Seeding Strategies in Networks," Management Science, INFORMS, vol. 68(3), pages 1714-1736, March.
- Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
- Daniel F. Pellatt, 2022. "PAC-Bayesian Treatment Allocation Under Budget Constraints," Papers 2212.09007, arXiv.org, revised Jun 2023.
- Black, Dan A. & Grogger, Jeffrey & Kirchmaier, Tom & Sanders, Koen, 2023.
"Criminal charges, risk assessment and violent recidivism in cases of domestic abuse,"
LSE Research Online Documents on Economics
121374, London School of Economics and Political Science, LSE Library.
- Dan A. Black & Jeffrey Grogger & Tom Kirchmaier & Koen Sanders, 2023. "Criminal Charges, Risk Assessment, and Violent Recidivism in Cases of Domestic Abuse," NBER Working Papers 30884, National Bureau of Economic Research, Inc.
- Dan A. Black & Jeffrey Grogger & Tom Kirchmaier & Koen Sanders, 2023. "Criminal charges, risk assessment and violent recidivism in cases of domestic abuse," CEP Discussion Papers dp1897, Centre for Economic Performance, LSE.
- Black, Dan A. & Grogger, Jeffrey & Kirchmaier, Tom & Sanders, Koen, 2023. "Criminal Charges, Risk Assessment, and Violent Recidivism in Cases of Domestic Abuse," IZA Discussion Papers 15885, Institute of Labor Economics (IZA).
- Patrick Rehill & Nicholas Biddle, 2023. "Transparency challenges in policy evaluation with causal machine learning -- improving usability and accountability," Papers 2310.13240, arXiv.org, revised Mar 2024.
- Patrick Rehill & Nicholas Biddle, 2023. "Fairness Implications of Heterogeneous Treatment Effect Estimation with Machine Learning Methods in Policy-making," Papers 2309.00805, arXiv.org.
- Ruohan Zhan & Zhimei Ren & Susan Athey & Zhengyuan Zhou, 2024.
"Policy Learning with Adaptively Collected Data,"
Management Science, INFORMS, vol. 70(8), pages 5270-5297, August.
- Ruohan Zhan & Zhimei Ren & Susan Athey & Zhengyuan Zhou, 2021. "Policy Learning with Adaptively Collected Data," Papers 2105.02344, arXiv.org, revised Nov 2022.
- Zhan, Ruohan & Ren, Zhimei & Athey, Susan & Zhou, Zhengyuan, 2021. "Policy Learning with Adaptively Collected Data," Research Papers 3963, Stanford University, Graduate School of Business.
- Yan Liu, 2022. "Policy Learning under Endogeneity Using Instrumental Variables," Papers 2206.09883, arXiv.org, revised Mar 2024.
- Takanori Ida & Takunori Ishihara & Koichiro Ito & Daido Kido & Toru Kitagawa & Shosei Sakaguchi & Shusaku Sasaki, 2022.
"Choosing Who Chooses: Selection-Driven Targeting in Energy Rebate Programs,"
NBER Working Papers
30469, National Bureau of Economic Research, Inc.
- IDA Takanori & ISHIHARA Takunori & ITO Koichiro & KIDO Daido & KITAGAWA Toru & SAKAGUCHI Shosei & SASAKI Shusaku, 2023. "Choosing Who Chooses: Selection-driven targeting in energy rebate programs," Discussion papers 23011, Research Institute of Economy, Trade and Industry (RIETI).
- Yuya Sasaki & Takuya Ura, 2020. "Welfare Analysis via Marginal Treatment Effects," Papers 2012.07624, arXiv.org.
- Takuya Ishihara & Toru Kitagawa, 2021. "Evidence Aggregation for Treatment Choice," Papers 2108.06473, arXiv.org, revised Jul 2024.
- Bokelmann, Björn & Lessmann, Stefan, 2024. "Improving uplift model evaluation on randomized controlled trial data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 691-707.
- Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
- Christensen, Peter & Francisco, Paul & Myers, Erica & Shao, Hansen & Souza, Mateus, 2024.
"Energy efficiency can deliver for climate policy: Evidence from machine learning-based targeting,"
Journal of Public Economics, Elsevier, vol. 234(C).
- Peter Christensen & Paul Francisco & Erica Myers & Hansen Shao & Mateus Souza, 2022. "Energy Efficiency Can Deliver for Climate Policy: Evidence from Machine Learning-Based Targeting," NBER Working Papers 30467, National Bureau of Economic Research, Inc.
- Toru Kitagawa & Shosei Sakaguchi & Aleksey Tetenov, 2021. "Constrained Classification and Policy Learning," Papers 2106.12886, arXiv.org, revised Jul 2023.
- Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023.
"Towards data-driven project design: Providing optimal treatment rules for development projects,"
Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
- Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2021. "Towards Data-driven Project design: Providing Optimal Treatment Rules for Development Projects," 2021 Annual Meeting, August 1-3, Austin, Texas 314016, Agricultural and Applied Economics Association.
- Yue Fang & Junyi Liu & Jong-Shi Pang, 2024. "Classification and Treatment Learning with Constraints via Composite Heaviside Optimization: a Progressive MIP Method," Papers 2401.01565, arXiv.org, revised Jan 2024.
- Augustine Denteh & Helge Liebert, 2022.
"Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment,"
CESifo Working Paper Series
9664, CESifo.
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Working Papers 2201, Tulane University, Department of Economics.
- Denteh, Augustine & Liebert, Helge, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," IZA Discussion Papers 15192, Institute of Labor Economics (IZA).
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Papers 2201.07072, arXiv.org, revised Apr 2023.
- Henrika Langen & Martin Huber, 2022. "How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign," Papers 2204.10820, arXiv.org, revised Jun 2022.
- Chunrong Ai & Yue Fang & Haitian Xie, 2024. "Data-driven Policy Learning for Continuous Treatments," Papers 2402.02535, arXiv.org, revised Nov 2024.
- Aaron L. Sarvet & Kerollos N. Wanis & Jessica G. Young & Roberto Hernandez‐Alejandro & Mats J. Stensrud, 2023. "Longitudinal incremental propensity score interventions for limited resource settings," Biometrics, The International Biometric Society, vol. 79(4), pages 3418-3430, December.
- Alexander J. Ohnmacht & Arndt Stahler & Sebastian Stintzing & Dominik P. Modest & Julian W. Holch & C. Benedikt Westphalen & Linus Hölzel & Marisa K. Schübel & Ana Galhoz & Ali Farnoud & Minhaz Ud-Dea, 2023. "The Oncology Biomarker Discovery framework reveals cetuximab and bevacizumab response patterns in metastatic colorectal cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Undral Byambadalai, 2022. "Identification and Inference for Welfare Gains without Unconfoundedness," Papers 2207.04314, arXiv.org.
- Pan Zhao & Yifan Cui, 2023. "A Semiparametric Instrumented Difference-in-Differences Approach to Policy Learning," Papers 2310.09545, arXiv.org.
- Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021.
"Optimal Targeting in Fundraising: A Machine-Learning Approach,"
Economics working papers
2021-08, Department of Economics, Johannes Kepler University Linz, Austria.
- Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Machine-Learning Approach," CESifo Working Paper Series 9037, CESifo.
- Toru Kitagawa & Guanyi Wang, 2020. "Who Should Get Vaccinated? Individualized Allocation of Vaccines Over SIR Network," Papers 2012.04055, arXiv.org, revised Jul 2021.
- Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
- Philipp Schwarz & Oliver Schacht & Sven Klaassen & Daniel Grunbaum & Sebastian Imhof & Martin Spindler, 2024. "Management Decisions in Manufacturing using Causal Machine Learning -- To Rework, or not to Rework?," Papers 2406.11308, arXiv.org.
- Kelvin Mulungu & Zewdu Ayalew Abro & Wambui Beatrice Muriithi & Menale Kassie & Miachael Kidoido & Subramanian Sevgan & Samira Mohamed & Chrysantus Tanga & Fathiya Khamis, 2024. "One size does not fit all: Heterogeneous economic impact of integrated pest management practices for mango fruit flies in Kenya—a machine learning approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 75(1), pages 261-279, February.
- Shuxiao Chen & Bo Zhang, 2021. "Estimating and Improving Dynamic Treatment Regimes With a Time-Varying Instrumental Variable," Papers 2104.07822, arXiv.org.
- Carlos Fernández-Loría & Foster Provost, 2022. "Causal Decision Making and Causal Effect Estimation Are Not the Same…and Why It Matters," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 4-16, April.
- Takanori Ida & Takunori Ishihara & Koichiro Ito & Daido Kido & Toru Kitagawa & Shosei Sakaguchi & Shusaku Sasaki, 2021. "Paternalism, Autonomy, or Both? Experimental Evidence from Energy Saving Programs," Papers 2112.09850, arXiv.org.
- Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Oct 2024.
- Toru Kitagawa & Guanyi Wang, 2020. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP59/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ali Shirali & Rediet Abebe & Moritz Hardt, 2024. "Allocation Requires Prediction Only if Inequality Is Low," Papers 2406.13882, arXiv.org.
- Toru Kitagawa & Jeff Rowley, 2024. "Bandit algorithms for policy learning: methods, implementation, and welfare-performance," The Japanese Economic Review, Springer, vol. 75(3), pages 407-447, July.
- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato & Yuta Koike, 2022. "High-dimensional Data Bootstrap," Papers 2205.09691, arXiv.org.
- Kasy, Maximilian, 2023.
"The Political Economy of AI: Towards Democratic Control of the Means of Prediction,"
SocArXiv
x7pcy, Center for Open Science.
- Kasy, Maximilian, 2024. "The Political Economy of AI: Towards Democratic Control of the Means of Prediction," IZA Discussion Papers 16948, Institute of Labor Economics (IZA).
- Maximilian Kasy, 2023. "The political economy of AI: Towards democratic control of the means of prediction," Economics Series Working Papers 1014, University of Oxford, Department of Economics.
- Kasy, Maximilian, 2023. "The political economy of AI: Towards democratic control of the means of prediction," INET Oxford Working Papers 2023-06, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
- Juan Carlos Perdomo, 2023. "The Relative Value of Prediction in Algorithmic Decision Making," Papers 2312.08511, arXiv.org, revised May 2024.
- Carlos Fernández-Loría & Foster Provost & Jesse Anderton & Benjamin Carterette & Praveen Chandar, 2023. "A Comparison of Methods for Treatment Assignment with an Application to Playlist Generation," Information Systems Research, INFORMS, vol. 34(2), pages 786-803, June.
- Artem Kuriksha, 2021. "An Economy of Neural Networks: Learning from Heterogeneous Experiences," Papers 2110.11582, arXiv.org.
- Kirill Ponomarev & Vira Semenova, 2024. "On the Lower Confidence Band for the Optimal Welfare," Papers 2410.07443, arXiv.org, revised Oct 2024.
- Federico Crippa, 2024. "Regret Analysis in Threshold Policy Design," Papers 2404.11767, arXiv.org.
- Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
- Yuchen Hu & Henry Zhu & Emma Brunskill & Stefan Wager, 2024. "Minimax-Regret Sample Selection in Randomized Experiments," Papers 2403.01386, arXiv.org, revised Jun 2024.
- Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
- Walter W. Zhang & Sanjog Misra, 2022. "Coarse Personalization," Papers 2204.05793, arXiv.org, revised Aug 2024.
- David Glynn & John Giardina & Julia Hatamyar & Ankur Pandya & Marta Soares & Noemi Kreif, 2024. "Integrating decision modeling and machine learning to inform treatment stratification," Health Economics, John Wiley & Sons, Ltd., vol. 33(8), pages 1772-1792, August.
- Ying Deng & Qianqian Yue & Xin Zhao, 2024. "What Does Air Quality Information Disclosure Deliver and to Whom? Evidence from the Ambient Air Quality Standard (2012) Program in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(11), pages 2859-2887, November.
- Charles F. Manski, 2021.
"Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald,"
Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
- Charles F. Manski, 2019. "Econometrics For Decision Making: Building Foundations Sketched By Haavelmo And Wald," NBER Working Papers 26596, National Bureau of Economic Research, Inc.
- Charles F. Manski, 2019. "Econometrics For Decision Making: Building Foundations Sketched By Haavelmo And Wald," Papers 1912.08726, arXiv.org, revised Feb 2021.
- Toon Vanderschueren & Robert Boute & Tim Verdonck & Bart Baesens & Wouter Verbeke, 2022. "Prescriptive maintenance with causal machine learning," Papers 2206.01562, arXiv.org.
- Zhengyu Zhang & Zequn Jin & Lihua Lin, 2024. "Identification and inference of outcome conditioned partial effects of general interventions," Papers 2407.16950, arXiv.org.
- Hugo Bodory & Federica Mascolo & Michael Lechner, 2024. "Enabling Decision-Making with the Modified Causal Forest: Policy Trees for Treatment Assignment," Papers 2406.02241, arXiv.org.
- Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
- Abhimanyu Mukerji & Sushant More & Ashwin Viswanathan Kannan & Lakshmi Ravi & Hua Chen & Naman Kohli & Chris Khawand & Dinesh Mandalapu, 2024. "Valuing an Engagement Surface using a Large Scale Dynamic Causal Model," Papers 2408.11967, arXiv.org.
- Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Dec 2024.
- Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Causal Machine-Learning Approach," Papers 2103.10251, arXiv.org, revised Sep 2021.
- Jonas Metzger, 2022. "Adversarial Estimators," Papers 2204.10495, arXiv.org, revised Jun 2022.
- Riccardo D'Adamo, 2021. "Orthogonal Policy Learning Under Ambiguity," Papers 2111.10904, arXiv.org, revised Dec 2022.
- Nathan Kallus, 2023. "Treatment Effect Risk: Bounds and Inference," Management Science, INFORMS, vol. 69(8), pages 4579-4590, August.
- Battiston, Pietro & Gamba, Simona & Santoro, Alessandro, 2024. "Machine learning and the optimization of prediction-based policies," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
- Jann Spiess & Vasilis Syrgkanis & Victor Yaneng Wang, 2021. "Finding Subgroups with Significant Treatment Effects," Papers 2103.07066, arXiv.org, revised Dec 2023.
- Bjorkegren, Dan & Blumenstock, Joshua & Knight, Samsun, 2022.
"(Machine) Learning What Policies Value,"
CEPR Discussion Papers
17364, C.E.P.R. Discussion Papers.
- Daniel Bjorkegren & Joshua E. Blumenstock & Samsun Knight, 2022. "(Machine) Learning What Policies Value," Papers 2206.00727, arXiv.org.
- Toru Kitagawa & Hugo Lopez & Jeff Rowley, 2022. "Stochastic Treatment Choice with Empirical Welfare Updating," Papers 2211.01537, arXiv.org, revised Feb 2023.
- Ryo Okui, 2024. "The 2023 Japanese Economic Association Nakahara Prize: Recipient—Prof. Toru Kitagawa, Brown University and University College London," The Japanese Economic Review, Springer, vol. 75(3), pages 405-406, July.
- Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022.
"Urban economics in a historical perspective: Recovering data with machine learning,"
Regional Science and Urban Economics, Elsevier, vol. 94(C).
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2020. "Urban economics in a historical perspective: Recovering data with machine learning," CEPR Discussion Papers 15308, C.E.P.R. Discussion Papers.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," SciencePo Working papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & yanos Zylberberg, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," PSE-Ecole d'économie de Paris (Postprint) halshs-03673240, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & yanos Zylberberg, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Post-Print halshs-03673240, HAL.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2021. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," IZA Discussion Papers 14392, Institute of Labor Economics (IZA).
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," PSE Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & yanos Zylberberg, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," SciencePo Working papers halshs-03673240, HAL.
- Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023.
"Treatment recommendation with distributional targets,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020. "Treatment recommendation with distributional targets," Papers 2005.09717, arXiv.org, revised Apr 2022.
- Christopher Adjaho & Timothy Christensen, 2022. "Externally Valid Policy Choice," Papers 2205.05561, arXiv.org, revised Jul 2023.
- Yu-Chang Chen & Haitian Xie, 2022. "Personalized Subsidy Rules," Papers 2202.13545, arXiv.org, revised Mar 2022.
- Nathan Kallus & Miruna Oprescu, 2022. "Robust and Agnostic Learning of Conditional Distributional Treatment Effects," Papers 2205.11486, arXiv.org, revised Feb 2023.
- Krantz, Sebastian, 2024. "Mapping Africa's infrastructure potential with geospatial big data and causal ML," Kiel Working Papers 2276, Kiel Institute for the World Economy (IfW Kiel).
- Elliott Ash & Sergio Galletta & Tommaso Giommoni, 2021. "A Machine Learning Approach to Analyze and Support Anti-Corruption Policy," CESifo Working Paper Series 9015, CESifo.
- Patrick Rehill & Nicholas Biddle, 2022. "Policy learning for many outcomes of interest: Combining optimal policy trees with multi-objective Bayesian optimisation," Papers 2212.06312, arXiv.org, revised Oct 2023.
- Hiroyuki Egami & Md. Shafiur Rahman & Tsuyoshi Yamamoto & Chihiro Egami & Takahisa Wakabayashi, 2024. "Causal effect of video gaming on mental well-being in Japan 2020–2022," Nature Human Behaviour, Nature, vol. 8(10), pages 1943-1956, October.
- Seungjin Han & Julius Owusu & Youngki Shin, 2022. "Statistical Treatment Rules under Social Interaction," Papers 2209.09077, arXiv.org, revised Nov 2022.
- Susan Athey & Guido W. Imbens, 2017.
"The State of Applied Econometrics: Causality and Policy Evaluation,"
Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
- Susan Athey & Guido Imbens, 2016. "The State of Applied Econometrics - Causality and Policy Evaluation," Papers 1607.00699, arXiv.org.
- Noemi Kreif & Andrew Mirelman & Rodrigo Moreno-Serra & Taufik Hidayat, & Karla DiazOrdaz & Marc Suhrcke, 2020. "Who benefits from health insurance? Uncovering heterogeneous policy impacts using causal machine learning," Working Papers 173cherp, Centre for Health Economics, University of York.
- Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
- von Zahn, Moritz & Bauer, Kevin & Mihale-Wilson, Cristina & Jagow, Johanna & Speicher, Max & Hinz, Oliver, 2022. "The smart green nudge: Reducing product returns through enriched digital footprints & causal machine learning," SAFE Working Paper Series 363, Leibniz Institute for Financial Research SAFE, revised 2022.
- Haushofer, Johannes & Niehaus, Paul & Paramo, Carlos & Miguel, Edward & Walker, Michael W, 2022.
"Targeting Impact Versus Deprivation,"
Department of Economics, Working Paper Series
qt07j8n9vz, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Johannes Haushofer & Paul Niehaus & Carlos Paramo & Edward Miguel & Michael W. Walker, 2022. "Targeting Impact versus Deprivation," NBER Working Papers 30138, National Bureau of Economic Research, Inc.
- Vanderschueren, Toon & Boute, Robert & Verdonck, Tim & Baesens, Bart & Verbeke, Wouter, 2023. "Optimizing the preventive maintenance frequency with causal machine learning," International Journal of Production Economics, Elsevier, vol. 258(C).
- Liyang Sun, 2021.
"Empirical Welfare Maximization with Constraints,"
Papers
2103.15298, arXiv.org, revised Sep 2024.
- Liyang Sun, 2024. "Empirical welfare maximization with constraints," CeMMAP working papers 19/24, Institute for Fiscal Studies.
- Toru Kitagawa & Guanyi Wang, 2023. "Individualized Treatment Allocation in Sequential Network Games," Papers 2302.05747, arXiv.org, revised Jul 2024.
- Susan Athey & Undral Byambadalai & Vitor Hadad & Sanath Kumar Krishnamurthy & Weiwen Leung & Joseph Jay Williams, 2022. "Contextual Bandits in a Survey Experiment on Charitable Giving: Within-Experiment Outcomes versus Policy Learning," Papers 2211.12004, arXiv.org.
- Yakymovych, Yaroslav, 2024. "Medical certificates and sickness absence: who stays away from work if monitoring is relaxed?," Working Paper Series 2024:19, IFAU - Institute for Evaluation of Labour Market and Education Policy.
- Davide Viviano & Kaspar Wuthrich & Paul Niehaus, 2021. "A model of multiple hypothesis testing," Papers 2104.13367, arXiv.org, revised Apr 2024.
- Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests," Papers 2110.03031, arXiv.org, revised Jun 2022.
- Kai Feng & Han Hong & Ke Tang & Jingyuan Wang, 2023. "Statistical Tests for Replacing Human Decision Makers with Algorithms," Papers 2306.11689, arXiv.org, revised Dec 2024.
- Ke Sun & Linglong Kong & Hongtu Zhu & Chengchun Shi, 2024. "Optimal Treatment Allocation Strategies for A/B Testing in Partially Observable Time Series Experiments," Papers 2408.05342, arXiv.org, revised Oct 2024.
- Christoph Breunig & Ruixuan Liu & Zhengfei Yu, 2022. "Double Robust Bayesian Inference on Average Treatment Effects," Papers 2211.16298, arXiv.org, revised Oct 2024.
- Kai Feng & Han Hong, 2024. "Statistical Inference of Optimal Allocations I: Regularities and their Implications," Papers 2403.18248, arXiv.org, revised Apr 2024.