IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v258y2023ics0925527323000300.html
   My bibliography  Save this article

Optimizing the preventive maintenance frequency with causal machine learning

Author

Listed:
  • Vanderschueren, Toon
  • Boute, Robert
  • Verdonck, Tim
  • Baesens, Bart
  • Verbeke, Wouter

Abstract

Maintenance is a challenging operational problem where the goal is to plan sufficient preventive maintenance (PM) to avoid asset overhauls and failures. Existing work typically relies on strong assumptions (1) to model the asset’s overhaul and failure rate, assuming a stochastic process with known hazard rate, (2) to model the effect of PM on this hazard rate, assuming the effect is deterministic or governed by a known probability distribution, and (3) by not taking asset-specific characteristics into account, but assuming homogeneous hazard rates and PM effects. Instead of relying on these assumptions to model the problem, this work uses causal inference to learn the effect of the PM frequency on the overhaul and failure rate, conditional on the asset’s characteristics, from observational data. Based on these learned outcomes, we can optimize each asset’s PM frequency to minimize the combined cost of failures, overhauls, and preventive maintenance. We validate our approach on real-life data of more than 4000 maintenance contracts from an industrial partner. Empirical results on semi-synthetic data show that our methodology based on causal machine learning results in individualized maintenance schedules that are more accurate and cost-effective than a non-causal approach that does not deal with selection bias and a non-individualized approach that prescribes the same PM frequency to all machines.

Suggested Citation

  • Vanderschueren, Toon & Boute, Robert & Verdonck, Tim & Baesens, Bart & Verbeke, Wouter, 2023. "Optimizing the preventive maintenance frequency with causal machine learning," International Journal of Production Economics, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:proeco:v:258:y:2023:i:c:s0925527323000300
    DOI: 10.1016/j.ijpe.2023.108798
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527323000300
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2023.108798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tanwar, Monika & Rai, Rajiv N. & Bolia, Nomesh, 2014. "Imperfect repair modeling using Kijima type generalized renewal process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 24-31.
    2. Poppe, Joeri & Boute, Robert N. & Lambrecht, Marc R., 2018. "A hybrid condition-based maintenance policy for continuously monitored components with two degradation thresholds," European Journal of Operational Research, Elsevier, vol. 268(2), pages 515-532.
    3. Pham, Hoang & Wang, Hongzhou, 1996. "Imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 94(3), pages 425-438, November.
    4. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    5. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    6. Swanson, Laura, 2001. "Linking maintenance strategies to performance," International Journal of Production Economics, Elsevier, vol. 70(3), pages 237-244, April.
    7. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    8. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    9. Toledo, Maria Luíza Guerra de & Freitas, Marta A. & Colosimo, Enrico A. & Gilardoni, Gustavo L., 2015. "ARA and ARI imperfect repair models: Estimation, goodness-of-fit and reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 107-115.
    10. Harsh Parikh & Carlos Varjao & Louise Xu & Eric Tchetgen Tchetgen, 2022. "Validating Causal Inference Methods," Papers 2202.04208, arXiv.org, revised Jul 2022.
    11. Do, Phuc & Voisin, Alexandre & Levrat, Eric & Iung, Benoit, 2015. "A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 22-32.
    12. Pier Francesco Orrù & Andrea Zoccheddu & Lorenzo Sassu & Carmine Mattia & Riccardo Cozza & Simone Arena, 2020. "Machine Learning Approach Using MLP and SVM Algorithms for the Fault Prediction of a Centrifugal Pump in the Oil and Gas Industry," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    13. Louit, D.M. & Pascual, R. & Jardine, A.K.S., 2009. "A practical procedure for the selection of time-to-failure models based on the assessment of trends in maintenance data," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1618-1628.
    14. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    15. Fouladirad, Mitra & Paroissin, Christian & Grall, Antoine, 2018. "Sensitivity of optimal replacement policies to lifetime parameter estimates," European Journal of Operational Research, Elsevier, vol. 266(3), pages 963-975.
    16. Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
    17. de Jonge, Bram & Klingenberg, Warse & Teunter, Ruud & Tinga, Tiedo, 2015. "Optimum maintenance strategy under uncertainty in the lifetime distribution," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 59-67.
    18. Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
    19. Dimitris Bertsimas & Nathan Kallus, 2020. "From Predictive to Prescriptive Analytics," Management Science, INFORMS, vol. 66(3), pages 1025-1044, March.
    20. Faccio, M. & Persona, A. & Sgarbossa, F. & Zanin, G., 2014. "Industrial maintenance policy development: A quantitative framework," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 85-93.
    21. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    22. Gits, C. W., 1992. "Design of maintenance concepts," International Journal of Production Economics, Elsevier, vol. 24(3), pages 217-226, March.
    23. Chukova, S. & Arnold, R. & Wang, Dong Q., 2004. "Warranty analysis: An approach to modeling imperfect repairs," International Journal of Production Economics, Elsevier, vol. 89(1), pages 57-68, May.
    24. Dinand Webbink, 2005. "Causal Effects in Education," Journal of Economic Surveys, Wiley Blackwell, vol. 19(4), pages 535-560, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Bockel-Rickermann & Sam Verboven & Tim Verdonck & Wouter Verbeke, 2023. "A Causal Perspective on Loan Pricing: Investigating the Impacts of Selection Bias on Identifying Bid-Response Functions," Papers 2309.03730, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toon Vanderschueren & Robert Boute & Tim Verdonck & Bart Baesens & Wouter Verbeke, 2022. "Prescriptive maintenance with causal machine learning," Papers 2206.01562, arXiv.org.
    2. Badía, F.G. & Berrade, M.D. & Cha, Ji Hwan & Lee, Hyunju, 2018. "Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 362-372.
    3. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    4. Chien, Yu-Hung & Zhang, Zhe George & Yin, Xiaoling, 2019. "On optimal preventive-maintenance policy for generalized Polya process repairable products under free-repair warranty," European Journal of Operational Research, Elsevier, vol. 279(1), pages 68-78.
    5. Toledo, Maria Luíza Guerra de & Freitas, Marta A. & Colosimo, Enrico A. & Gilardoni, Gustavo L., 2015. "ARA and ARI imperfect repair models: Estimation, goodness-of-fit and reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 107-115.
    6. Nguyen, Van-Thai & Do, Phuc & Vosin, Alexandre & Iung, Benoit, 2022. "Artificial-intelligence-based maintenance decision-making and optimization for multi-state component systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Dursun, İpek & Akçay, Alp & van Houtum, Geert-Jan, 2022. "Age-based maintenance under population heterogeneity: Optimal exploration and exploitation," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1007-1020.
    8. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    9. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    10. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    11. Belyi, Dmitriy & Popova, Elmira & Morton, David P. & Damien, Paul, 2017. "Bayesian failure-rate modeling and preventive maintenance optimization," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1085-1093.
    12. Ming-Yi You & Guang Meng, 2012. "A modularized framework for predictive maintenance scheduling," Journal of Risk and Reliability, , vol. 226(4), pages 380-391, August.
    13. Briš, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.
    14. You, Ming-Yi & Li, Hongguang & Meng, Guang, 2011. "Control-limit preventive maintenance policies for components subject to imperfect preventive maintenance and variable operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 590-598.
    15. Lin, Zu-Liang & Huang, Yeu-Shiang & Fang, Chih-Chiang, 2015. "Non-periodic preventive maintenance with reliability thresholds for complex repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 145-156.
    16. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    17. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    18. Huynh, K.T., 2021. "An adaptive predictive maintenance model for repairable deteriorating systems using inverse Gaussian degradation process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    19. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2017. "Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum’s structural importance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 249-261.
    20. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:258:y:2023:i:c:s0925527323000300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.