IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.05342.html
   My bibliography  Save this paper

Optimal Treatment Allocation Strategies for A/B Testing in Partially Observable Time Series Experiments

Author

Listed:
  • Ke Sun
  • Linglong Kong
  • Hongtu Zhu
  • Chengchun Shi

Abstract

Time series experiments, in which experimental units receive a sequence of treatments over time, are frequently employed in many technological companies to evaluate the performance of a newly developed policy, product, or treatment relative to a baseline control. Many existing A/B testing solutions assume a fully observable experimental environment that satisfies the Markov condition, which often does not hold in practice. This paper studies the optimal design for A/B testing in partially observable environments. We introduce a controlled (vector) autoregressive moving average model to capture partial observability. We introduce a small signal asymptotic framework to simplify the analysis of asymptotic mean squared errors of average treatment effect estimators under various designs. We develop two algorithms to estimate the optimal design: one utilizing constrained optimization and the other employing reinforcement learning. We demonstrate the superior performance of our designs using a dispatch simulator and two real datasets from a ride-sharing company. A Python implementation of our proposal is available at https://github.com/datake/ARMADesign.

Suggested Citation

  • Ke Sun & Linglong Kong & Hongtu Zhu & Chengchun Shi, 2024. "Optimal Treatment Allocation Strategies for A/B Testing in Partially Observable Time Series Experiments," Papers 2408.05342, arXiv.org, revised Oct 2024.
  • Handle: RePEc:arx:papers:2408.05342
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.05342
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Athey, Susan & Bickel, Peter J. & Chen, Aiyou & Imbens, Guido W. & Pollmann, Michael, 2021. "Semiparametric Estimation of Treatment Effects in Randomized Experiments," Research Papers 3986, Stanford University, Graduate School of Business.
    3. Iavor Bojinov & Neil Shephard, 2019. "Time Series Experiments and Causal Estimands: Exact Randomization Tests and Trading," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1665-1682, October.
    4. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    5. Michael P. Leung, 2021. "Rate-Optimal Cluster-Randomized Designs for Spatial Interference," Papers 2111.04219, arXiv.org, revised Sep 2022.
    6. George E. Monahan, 1982. "State of the Art---A Survey of Partially Observable Markov Decision Processes: Theory, Models, and Algorithms," Management Science, INFORMS, vol. 28(1), pages 1-16, January.
    7. Daniel J. Luckett & Eric B. Laber & Anna R. Kahkoska & David M. Maahs & Elizabeth Mayer-Davis & Michael R. Kosorok, 2020. "Estimating Dynamic Treatment Regimes in Mobile Health Using V-Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 692-706, April.
    8. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey, 2017. "Double/Debiased/Neyman Machine Learning of Treatment Effects," American Economic Review, American Economic Association, vol. 107(5), pages 261-265, May.
    9. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    10. Nicholas Larsen & Jonathan Stallrich & Srijan Sengupta & Alex Deng & Ron Kohavi & Nathaniel T. Stevens, 2024. "Statistical Challenges in Online Controlled Experiments: A Review of A/B Testing Methodology," The American Statistician, Taylor & Francis Journals, vol. 78(2), pages 135-149, April.
    11. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    12. Timothy B. Armstrong & Michal Kolesár, 2021. "Finite‐Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness," Econometrica, Econometric Society, vol. 89(3), pages 1141-1177, May.
    13. Hendry, David F., 1995. "Dynamic Econometrics," OUP Catalogue, Oxford University Press, number 9780198283164.
    14. Yuchen Hu & Stefan Wager, 2022. "Switchback Experiments under Geometric Mixing," Papers 2209.00197, arXiv.org, revised Apr 2024.
    15. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, October.
    16. Iavor Bojinov & David Simchi-Levi & Jinglong Zhao, 2023. "Design and Analysis of Switchback Experiments," Management Science, INFORMS, vol. 69(7), pages 3759-3777, July.
    17. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    18. Rembrand Koning & Sharique Hasan & Aaron Chatterji, 2022. "Experimentation and Start-up Performance: Evidence from A/B Testing," Management Science, INFORMS, vol. 68(9), pages 6434-6453, September.
    19. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
    20. Christos H. Papadimitriou & John N. Tsitsiklis, 1987. "The Complexity of Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 12(3), pages 441-450, August.
    21. Chengchun Shi & Xiaoyu Wang & Shikai Luo & Hongtu Zhu & Jieping Ye & Rui Song, 2023. "Dynamic Causal Effects Evaluation in A/B Testing with a Reinforcement Learning Framework," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(543), pages 2059-2071, July.
    22. Li, Ting & Shi, Chengchun & Lu, Zhaohua & Li, Yi & Zhu, Hongtu, 2024. "Evaluating dynamic conditional quantile treatment effects with applications in ridesharing," LSE Research Online Documents on Economics 122488, London School of Economics and Political Science, LSE Library.
    23. Michael Rosenblum & Ethan X. Fang & Han Liu, 2020. "Optimal, two‐stage, adaptive enrichment designs for randomized trials, using sparse linear programming," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 749-772, July.
    24. Bradley Jones & Peter Goos, 2009. "D-optimal design of split-split-plot experiments," Biometrika, Biometrika Trust, vol. 96(1), pages 67-82.
    25. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
    26. Eduardo M. Azevedo & Alex Deng & José Luis Montiel Olea & Justin Rao & E. Glen Weyl, 2020. "A/B Testing with Fat Tails," Journal of Political Economy, University of Chicago Press, vol. 128(12), pages 4614-4000.
    27. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    28. Anna Mikusheva, 2007. "Uniform Inference in Autoregressive Models," Econometrica, Econometric Society, vol. 75(5), pages 1411-1452, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    2. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    3. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    4. Valente, Marica, 2023. "Policy evaluation of waste pricing programs using heterogeneous causal effect estimation," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
    5. Retsef Levi & Elisabeth Paulson & Georgia Perakis & Emily Zhang, 2024. "Heterogeneous Treatment Effects in Panel Data," Papers 2406.05633, arXiv.org.
    6. Li, Ting & Shi, Chengchun & Wen, Qianglin & Sui, Yang & Qin, Yongli & Lai, Chunbo & Zhu, Hongtu, 2024. "Combining experimental and historical data for policy evaluation," LSE Research Online Documents on Economics 125588, London School of Economics and Political Science, LSE Library.
    7. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    8. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    9. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    10. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    11. Miruna Oprescu & Vasilis Syrgkanis & Zhiwei Steven Wu, 2018. "Orthogonal Random Forest for Causal Inference," Papers 1806.03467, arXiv.org, revised Sep 2019.
    12. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    13. Jonas Metzger, 2022. "Adversarial Estimators," Papers 2204.10495, arXiv.org, revised Jun 2022.
    14. Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," Papers 2112.13398, arXiv.org, revised May 2024.
    15. Shuze Chen & David Simchi-Levi & Chonghuan Wang, 2024. "Experimenting on Markov Decision Processes with Local Treatments," Papers 2407.19618, arXiv.org, revised Oct 2024.
    16. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    17. Gazeaud, Jules & Khan, Nausheen & Mvukiyehe, Eric & Sterck, Olivier, 2023. "With or without him? Experimental evidence on cash grants and gender-sensitive trainings in Tunisia," Journal of Development Economics, Elsevier, vol. 165(C).
    18. Nathan Kallus, 2023. "Treatment Effect Risk: Bounds and Inference," Management Science, INFORMS, vol. 69(8), pages 4579-4590, August.
    19. Anna Baiardi & Andrea A. Naghi, 2021. "The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies," Papers 2101.00878, arXiv.org.
    20. Jiaming Mao & Jingzhi Xu, 2020. "Ensemble Learning with Statistical and Structural Models," Papers 2006.05308, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.05342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.