Transparency challenges in policy evaluation with causal machine learning -- improving usability and accountability
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Leigh, Andrew & Ryan, Chris, 2008.
"Estimating returns to education using different natural experiment techniques,"
Economics of Education Review, Elsevier, vol. 27(2), pages 149-160, April.
- Andrew Leigh & Chris Ryan, 2005. "Estimating Returns to Education: Three Natural Experiment Techniques Compared," CEPR Discussion Papers 493, Centre for Economic Policy Research, Research School of Economics, Australian National University.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2023.
"Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium,"
Labour Economics, Elsevier, vol. 80(C).
- Bart Cockx & Michael Lechner & Joost Bollens, 2019. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Papers 1912.12864, arXiv.org, revised Dec 2022.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," ROA Research Memorandum 006, Maastricht University, Research Centre for Education and the Labour Market (ROA).
- Bart Cockx & Michael Lechner & Joost Bollens, 2020. "Priority of Unemployed Immigrants? A Causal Machine Learning Evaluation of Training in Belgium," CESifo Working Paper Series 8297, CESifo.
- Lechner, Michael & Cockx, Bart & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," CEPR Discussion Papers 14270, C.E.P.R. Discussion Papers.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Economics Working Paper Series 2001, University of St. Gallen, School of Economics and Political Science.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Research Memorandum 015, Maastricht University, Graduate School of Business and Economics (GSBE).
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2019. "Priority to Unemployed Immigrants? A Causal Machine Learning Evaluation of Training in Belgium," IZA Discussion Papers 12875, Institute of Labor Economics (IZA).
- Bart Cockx & Michael Lechner & Joost Bollens, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 20/998, Ghent University, Faculty of Economics and Business Administration.
- Bart Cockx & Michael Lechner & Joost Bollens, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," LIDAM Discussion Papers IRES 2020016, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Susan Athey & Stefan Wager, 2021.
"Policy Learning With Observational Data,"
Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
- Xinkun Nie & Stefan Wager, 2017. "Quasi-Oracle Estimation of Heterogeneous Treatment Effects," Papers 1712.04912, arXiv.org, revised Aug 2020.
- O'Neill, E. & Weeks, M., 2018. "Causal Tree Estimation of Heterogeneous Household Response to Time-Of-Use Electricity Pricing Schemes," Cambridge Working Papers in Economics 1865, Faculty of Economics, University of Cambridge.
- Susan Athey & Guido W. Imbens, 2017.
"The State of Applied Econometrics: Causality and Policy Evaluation,"
Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
- Susan Athey & Guido Imbens, 2016. "The State of Applied Econometrics - Causality and Policy Evaluation," Papers 1607.00699, arXiv.org.
- Arun Rai, 2020. "Explainable AI: from black box to glass box," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 137-141, January.
- Chernozhukov, Victor & Kasahara, Hiroyuki & Schrimpf, Paul, 2021.
"Causal impact of masks, policies, behavior on early covid-19 pandemic in the U.S,"
Journal of Econometrics, Elsevier, vol. 220(1), pages 23-62.
- Victor Chernozhukov & Hiroyuki Kasahara & Paul Schrimpf, 2020. "Causal impact of masks, policies, behavior on early COVID-19 pandemic in the U.S," CeMMAP working papers CWP24/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Hiroyuki Kasaha & Paul Schrimpf, 2020. "Causal Impact of Masks, Policies, Behavior on Early Covid-19 Pandemic in the U.S," Papers 2005.14168, arXiv.org, revised Oct 2020.
- Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
- Patrick Rehill & Nicholas Biddle, 2023. "Fairness Implications of Heterogeneous Treatment Effect Estimation with Machine Learning Methods in Policy-making," Papers 2309.00805, arXiv.org.
- Charles F. Manski, 2004.
"Statistical Treatment Rules for Heterogeneous Populations,"
Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
- Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers CWP03/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers 03/03, Institute for Fiscal Studies.
- Mr. Andrew J Tiffin, 2019. "Machine Learning and Causality: The Impact of Financial Crises on Growth," IMF Working Papers 2019/228, International Monetary Fund.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
- Vira Semenova & Victor Chernozhukov, 2021. "Debiased machine learning of conditional average treatment effects and other causal functions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 264-289.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Patrick Rehill, 2024. "How do applied researchers use the Causal Forest? A methodological review of a method," Papers 2404.13356, arXiv.org, revised Dec 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Patrick Rehill & Nicholas Biddle, 2023. "Fairness Implications of Heterogeneous Treatment Effect Estimation with Machine Learning Methods in Policy-making," Papers 2309.00805, arXiv.org.
- Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
- Michael C Knaus, 2022.
"Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Knaus, Michael C., 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Economics Working Paper Series 2004, University of St. Gallen, School of Economics and Political Science.
- Knaus, Michael C., 2020. "Double Machine Learning Based Program Evaluation under Unconfoundedness," IZA Discussion Papers 13051, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
- Henrika Langen & Martin Huber, 2022. "How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign," Papers 2204.10820, arXiv.org, revised Jun 2022.
- Phillip Heiler & Michael C. Knaus, 2021.
"Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments,"
Papers
2110.01427, arXiv.org, revised Aug 2023.
- Heiler, Phillip & Knaus, Michael C., 2022. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," IZA Discussion Papers 15580, Institute of Labor Economics (IZA).
- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Kelvin Mulungu & Zewdu Ayalew Abro & Wambui Beatrice Muriithi & Menale Kassie & Miachael Kidoido & Subramanian Sevgan & Samira Mohamed & Chrysantus Tanga & Fathiya Khamis, 2024. "One size does not fit all: Heterogeneous economic impact of integrated pest management practices for mango fruit flies in Kenya—a machine learning approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 75(1), pages 261-279, February.
- Christopher Adjaho & Timothy Christensen, 2022. "Externally Valid Policy Choice," Papers 2205.05561, arXiv.org, revised Jul 2023.
- Miruna Oprescu & Vasilis Syrgkanis & Zhiwei Steven Wu, 2018. "Orthogonal Random Forest for Causal Inference," Papers 1806.03467, arXiv.org, revised Sep 2019.
- Nathan Kallus, 2023. "Treatment Effect Risk: Bounds and Inference," Management Science, INFORMS, vol. 69(8), pages 4579-4590, August.
- Augustine Denteh & Helge Liebert, 2022.
"Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment,"
Papers
2201.07072, arXiv.org, revised Apr 2023.
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," CESifo Working Paper Series 9664, CESifo.
- Denteh, Augustine & Liebert, Helge, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," IZA Discussion Papers 15192, Institute of Labor Economics (IZA).
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Working Papers 2201, Tulane University, Department of Economics.
- Valente, Marica, 2023.
"Policy evaluation of waste pricing programs using heterogeneous causal effect estimation,"
Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
- Marica Valente, 2020. "Policy evaluation of waste pricing programs using heterogeneous causal effect estimation," Papers 2010.01105, arXiv.org, revised Nov 2022.
- Marica Valente, 2021. "Policy Evaluation of Waste Pricing Programs Using Heterogeneous Causal Effect Estimation," Discussion Papers of DIW Berlin 1980, DIW Berlin, German Institute for Economic Research.
- Alejandro Sanchez-Becerra, 2023. "Robust inference for the treatment effect variance in experiments using machine learning," Papers 2306.03363, arXiv.org.
- Goller, Daniel & Harrer, Tamara & Lechner, Michael & Wolff, Joachim, 2021.
"Active labour market policies for the long-term unemployed: New evidence from causal machine learning,"
Economics Working Paper Series
2108, University of St. Gallen, School of Economics and Political Science.
- Daniel Goller & Tamara Harrer & Michael Lechner & Joachim Wolff, 2021. "Active labour market policies for the long-term unemployed: New evidence from causal machine learning," Papers 2106.10141, arXiv.org, revised May 2023.
- Goller, Daniel & Harrer, Tamara & Lechner, Michael & Wolff, Joachim, 2021. "Active Labour Market Policies for the Long-Term Unemployed: New Evidence from Causal Machine Learning," IZA Discussion Papers 14486, Institute of Labor Economics (IZA).
- Anna Baiardi & Andrea A. Naghi, 2021. "The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies," Papers 2101.00878, arXiv.org.
- Anna Baiardi & Andrea A. Naghi, 2021. "The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies," Tinbergen Institute Discussion Papers 21-001/V, Tinbergen Institute.
- Joshua B. Gilbert & Zachary Himmelsbach & James Soland & Mridul Joshi & Benjamin W. Domingue, 2024. "Estimating Heterogeneous Treatment Effects with Item-Level Outcome Data: Insights from Item Response Theory," Papers 2405.00161, arXiv.org, revised Aug 2024.
- Harsh Parikh & Carlos Varjao & Louise Xu & Eric Tchetgen Tchetgen, 2022. "Validating Causal Inference Methods," Papers 2202.04208, arXiv.org, revised Jul 2022.
- Jonathan Fuhr & Philipp Berens & Dominik Papies, 2024. "Estimating Causal Effects with Double Machine Learning -- A Method Evaluation," Papers 2403.14385, arXiv.org, revised Apr 2024.
- Carlos Fernández-Loría & Foster Provost & Jesse Anderton & Benjamin Carterette & Praveen Chandar, 2023. "A Comparison of Methods for Treatment Assignment with an Application to Playlist Generation," Information Systems Research, INFORMS, vol. 34(2), pages 786-803, June.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-11-20 (Big Data)
- NEP-CMP-2023-11-20 (Computational Economics)
- NEP-ECM-2023-11-20 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.13240. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.