Classification and Treatment Learning with Constraints via Composite Heaviside Optimization: a Progressive MIP Method
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Susan Athey & Stefan Wager, 2021.
"Policy Learning With Observational Data,"
Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yi Zhang & Kosuke Imai, 2023. "Individualized Policy Evaluation and Learning under Clustered Network Interference," Papers 2311.02467, arXiv.org, revised Feb 2024.
- Manski, Charles F., 2023.
"Probabilistic prediction for binary treatment choice: With focus on personalized medicine,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
- Charles F. Manski, 2021. "Probabilistic Prediction for Binary Treatment Choice: with Focus on Personalized Medicine," NBER Working Papers 29358, National Bureau of Economic Research, Inc.
- Charles F. Manski, 2021. "Probabilistic Prediction for Binary Treatment Choice: with focus on personalized medicine," Papers 2110.00864, arXiv.org.
- Yan Liu, 2022. "Policy Learning under Endogeneity Using Instrumental Variables," Papers 2206.09883, arXiv.org, revised Mar 2024.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022.
"Urban economics in a historical perspective: Recovering data with machine learning,"
Regional Science and Urban Economics, Elsevier, vol. 94(C).
- Gobillon, Laurent & Combes, Pierre-Philippe & Zylberberg, Yanos, 2020. "Urban economics in a historical perspective: Recovering data with machine learning," CEPR Discussion Papers 15308, C.E.P.R. Discussion Papers.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," PSE-Ecole d'économie de Paris (Postprint) halshs-03673240, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," Post-Print halshs-03673240, HAL.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2021. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," IZA Discussion Papers 14392, Institute of Labor Economics (IZA).
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," PSE Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," SciencePo Working papers Main halshs-03673240, HAL.
- Bokelmann, Björn & Lessmann, Stefan, 2024. "Improving uplift model evaluation on randomized controlled trial data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 691-707.
- Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023.
"Towards data-driven project design: Providing optimal treatment rules for development projects,"
Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
- Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2021. "Towards Data-driven Project design: Providing Optimal Treatment Rules for Development Projects," 2021 Annual Meeting, August 1-3, Austin, Texas 314016, Agricultural and Applied Economics Association.
- Ruohan Zhan & Zhimei Ren & Susan Athey & Zhengyuan Zhou, 2024.
"Policy Learning with Adaptively Collected Data,"
Management Science, INFORMS, vol. 70(8), pages 5270-5297, August.
- Ruohan Zhan & Zhimei Ren & Susan Athey & Zhengyuan Zhou, 2021. "Policy Learning with Adaptively Collected Data," Papers 2105.02344, arXiv.org, revised Nov 2022.
- Zhan, Ruohan & Ren, Zhimei & Athey, Susan & Zhou, Zhengyuan, 2021. "Policy Learning with Adaptively Collected Data," Research Papers 3963, Stanford University, Graduate School of Business.
- Undral Byambadalai, 2022. "Identification and Inference for Welfare Gains without Unconfoundedness," Papers 2207.04314, arXiv.org.
- Black, Dan A. & Grogger, Jeffrey & Kirchmaier, Tom & Sanders, Koen, 2023.
"Criminal charges, risk assessment and violent recidivism in cases of domestic abuse,"
LSE Research Online Documents on Economics
121374, London School of Economics and Political Science, LSE Library.
- Black, Dan A. & Grogger, Jeffrey & Kirchmaier, Tom & Sanders, Koen, 2023. "Criminal Charges, Risk Assessment, and Violent Recidivism in Cases of Domestic Abuse," IZA Discussion Papers 15885, Institute of Labor Economics (IZA).
- Dan A. Black & Jeffrey Grogger & Tom Kirchmaier & Koen Sanders, 2023. "Criminal charges, risk assessment and violent recidivism in cases of domestic abuse," CEP Discussion Papers dp1897, Centre for Economic Performance, LSE.
- Dan A. Black & Jeffrey Grogger & Tom Kirchmaier & Koen Sanders, 2023. "Criminal Charges, Risk Assessment, and Violent Recidivism in Cases of Domestic Abuse," NBER Working Papers 30884, National Bureau of Economic Research, Inc.
- Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
- Yuchen Hu & Henry Zhu & Emma Brunskill & Stefan Wager, 2024. "Minimax-Regret Sample Selection in Randomized Experiments," Papers 2403.01386, arXiv.org, revised Jun 2024.
- Jonas Metzger, 2022. "Adversarial Estimators," Papers 2204.10495, arXiv.org, revised Jun 2022.
- Toru Kitagawa & Hugo Lopez & Jeff Rowley, 2022. "Stochastic Treatment Choice with Empirical Welfare Updating," Papers 2211.01537, arXiv.org, revised Feb 2023.
- Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023.
"Treatment recommendation with distributional targets,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020. "Treatment recommendation with distributional targets," Papers 2005.09717, arXiv.org, revised Apr 2022.
- Nathan Kallus & Miruna Oprescu, 2022. "Robust and Agnostic Learning of Conditional Distributional Treatment Effects," Papers 2205.11486, arXiv.org, revised Feb 2023.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2023.
"Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium,"
Labour Economics, Elsevier, vol. 80(C).
- Bart Cockx & Michael Lechner & Joost Bollens, 2019. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Papers 1912.12864, arXiv.org, revised Dec 2022.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," ROA Research Memorandum 006, Maastricht University, Research Centre for Education and the Labour Market (ROA).
- Bart Cockx & Michael Lechner & Joost Bollens, 2020. "Priority of Unemployed Immigrants? A Causal Machine Learning Evaluation of Training in Belgium," CESifo Working Paper Series 8297, CESifo.
- Lechner, Michael & Cockx, Bart & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," CEPR Discussion Papers 14270, C.E.P.R. Discussion Papers.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Economics Working Paper Series 2001, University of St. Gallen, School of Economics and Political Science.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Research Memorandum 015, Maastricht University, Graduate School of Business and Economics (GSBE).
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2019. "Priority to Unemployed Immigrants? A Causal Machine Learning Evaluation of Training in Belgium," IZA Discussion Papers 12875, Institute of Labor Economics (IZA).
- Bart Cockx & Michael Lechner & Joost Bollens, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 20/998, Ghent University, Faculty of Economics and Business Administration.
- Bart Cockx & Michael Lechner & Joost Bollens, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," LIDAM Discussion Papers IRES 2020016, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
- Davide Viviano & Kaspar Wuthrich & Paul Niehaus, 2021. "A model of multiple hypothesis testing," Papers 2104.13367, arXiv.org, revised Apr 2024.
- Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests," Papers 2110.03031, arXiv.org, revised Jun 2022.
- Kai Feng & Han Hong, 2024. "Statistical Inference of Optimal Allocations I: Regularities and their Implications," Papers 2403.18248, arXiv.org, revised Apr 2024.
- Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2024-02-05 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.01565. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.