One size does not fit all: Heterogeneous economic impact of integrated pest management practices for mango fruit flies in Kenya—a machine learning approach
Author
Abstract
Suggested Citation
DOI: 10.1111/1477-9552.12550
Download full text from publisher
References listed on IDEAS
- Imai, Kosuke & Strauss, Aaron, 2011.
"Estimation of Heterogeneous Treatment Effects from Randomized Experiments, with Application to the Optimal Planning of the Get-Out-the-Vote Campaign,"
Political Analysis, Cambridge University Press, vol. 19(1), pages 1-19, January.
- Grimmer, Justin & Messing, Solomon & Westwood, Sean J., 2017. "Estimating Heterogeneous Treatment Effects and the Effects of Heterogeneous Treatments with Ensemble Methods," Political Analysis, Cambridge University Press, vol. 25(4), pages 413-434, October.
- Tavneet Suri, 2011. "Selection and Comparative Advantage in Technology Adoption," Econometrica, Econometric Society, vol. 79(1), pages 159-209, January.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2023. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Labour Economics, Elsevier, vol. 80(C).
- Bart Cockx & Michael Lechner & Joost Bollens, 2019. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Papers 1912.12864, arXiv.org, revised Dec 2022.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," ROA Research Memorandum 006, Maastricht University, Research Centre for Education and the Labour Market (ROA).
- Bart Cockx & Michael Lechner & Joost Bollens, 2020. "Priority of Unemployed Immigrants? A Causal Machine Learning Evaluation of Training in Belgium," CESifo Working Paper Series 8297, CESifo.
- Lechner, Michael & Cockx, Bart & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," CEPR Discussion Papers 14270, C.E.P.R. Discussion Papers.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Economics Working Paper Series 2001, University of St. Gallen, School of Economics and Political Science.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Research Memorandum 015, Maastricht University, Graduate School of Business and Economics (GSBE).
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2019. "Priority to Unemployed Immigrants? A Causal Machine Learning Evaluation of Training in Belgium," IZA Discussion Papers 12875, Institute of Labor Economics (IZA).
- Bart Cockx & Michael Lechner & Joost Bollens, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 20/998, Ghent University, Faculty of Economics and Business Administration.
- Bart Cockx & Michael Lechner & Joost Bollens, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," LIDAM Discussion Papers IRES 2020016, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
- Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
- Jeffrey M. Wooldridge, 2001. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262232197, April.
- Soul‐kifouly G. Midingoyi & Menale Kassie & Beatrice Muriithi & Gracious Diiro & Sunday Ekesi, 2019. "Do Farmers and the Environment Benefit from Adopting Integrated Pest Management Practices? Evidence from Kenya," Journal of Agricultural Economics, Wiley Blackwell, vol. 70(2), pages 452-470, June.
- Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
- Whittaker, Gerald W. & Lin, Biing-Hwan & Vasavada, Utpal, 1995. "Restricting Pesticide Use: The Impact On Profitability By Farm Size," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 27(2), pages 1-11, December.
- Whittaker, Gerald & Lin, Biing-Hwan & Vasavada, Utpal, 1995. "Restricting Pesticide Use: The Impact on Profitability by Farm Size," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 27(2), pages 352-262, December.
- Xinkun Nie & Stefan Wager, 2017. "Quasi-Oracle Estimation of Heterogeneous Treatment Effects," Papers 1712.04912, arXiv.org, revised Aug 2020.
- Djebbari, Habiba & Smith, Jeffrey, 2008. "Heterogeneous impacts in PROGRESA," Journal of Econometrics, Elsevier, vol. 145(1-2), pages 64-80, July.
- Djebbari, Habiba & Smith, Jeffrey A., 2008. "Heterogeneous Impacts in PROGRESA," IZA Discussion Papers 3362, Institute of Labor Economics (IZA).
- Githiomi, Caroline & Muriithi, Beatrice & Irungu, Patrick & Mwungu, Chris M. & Diiro, Gracious & Affognon, Hippolyte & Mburu, John & Ekesi, Sunday, 2019. "Economic analysis of spillover effects of an integrated pest management (IPM) strategy for suppression of mango fruit fly in Kenya," Food Policy, Elsevier, vol. 84(C), pages 121-132.
- Jonathan M.V. Davis & Sara B. Heller, 2017. "Using Causal Forests to Predict Treatment Heterogeneity: An Application to Summer Jobs," American Economic Review, American Economic Association, vol. 107(5), pages 546-550, May.
- Christian Stetter & Philipp Mennig & Johannes Sauer, 2022. "Using Machine Learning to Identify Heterogeneous Impacts of Agri-Environment Schemes in the EU: A Case Study," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(4), pages 723-759.
- McKenzie, David, 2012. "Beyond baseline and follow-up: The case for more T in experiments," Journal of Development Economics, Elsevier, vol. 99(2), pages 210-221.
- McKenzie, David, 2011. "Beyond baseline and follow-up : the case for more t in experiments," Policy Research Working Paper Series 5639, The World Bank.
- Carl Bonander & Mikael Svensson, 2021. "Using causal forests to assess heterogeneity in cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 30(8), pages 1818-1832, August.
- Mr. Andrew J Tiffin, 2019. "Machine Learning and Causality: The Impact of Financial Crises on Growth," IMF Working Papers 2019/228, International Monetary Fund.
- Marco Stampini & Benjamin Davis, 2009. "Does nonagricultural labor relax farmers’ credit constraints? Evidence from longitudinal data for Vietnam," Agricultural Economics, International Association of Agricultural Economists, vol. 40(2), pages 177-188, March.
- Asresu Yitayew & Awudu Abdulai & Yigezu A Yigezu, 2022. "Improved agricultural input delivery systems for enhancing technology adoption: evidence from a field experiment in Ethiopia," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(3), pages 527-556. Full references (including those not matched with items on IDEAS)
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Patrick Rehill & Nicholas Biddle, 2023. "Transparency challenges in policy evaluation with causal machine learning -- improving usability and accountability," Papers 2310.13240, arXiv.org, revised Mar 2024.
- Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021.
"Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence,"
The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," IZA Discussion Papers 12039, Institute of Labor Economics (IZA).
- Lechner, Michael & Knaus, Michael C. & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," CEPR Discussion Papers 13402, C.E.P.R. Discussion Papers.
- Knaus, Michael C. & Lechner, Michael & anthony.strittmatter@unisg.ch, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Economics Working Paper Series 1817, University of St. Gallen, School of Economics and Political Science.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Papers 1810.13237, arXiv.org, revised Dec 2018.
- Gregory Faletto, 2023. "Fused Extended Two-Way Fixed Effects for Difference-in-Differences With Staggered Adoptions," Papers 2312.05985, arXiv.org, revised Oct 2024.
- Lihua Lei & Emmanuel J. Candès, 2021. "Conformal inference of counterfactuals and individual treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 911-938, November.
- Paul Clarke & Annalivia Polselli, 2023. "Double Machine Learning for Static Panel Models with Fixed Effects," Papers 2312.08174, arXiv.org, revised Sep 2024.
- Lechner, Michael, 2018.
"Modified Causal Forests for Estimating Heterogeneous Causal Effects,"
IZA Discussion Papers
12040, Institute of Labor Economics (IZA).
- Lechner, Michael, 2019. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," CEPR Discussion Papers 13430, C.E.P.R. Discussion Papers.
- Lechner, Michael, 2019. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," Economics Working Paper Series 1901, University of St. Gallen, School of Economics and Political Science.
- Michael Lechner, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," Papers 1812.09487, arXiv.org, revised Jul 2019.
- Sakos, Grayson & Cerulli, Giovanni & Garbero, Alessandra, 2021. "Beyond the ATE: Idiosyncratic Effect Estimation to Uncover Distributional Impacts Results from 17 Impact Evaluations," 2021 Annual Meeting, August 1-3, Austin, Texas 314017, Agricultural and Applied Economics Association.
- Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
- repec:lic:licosd:31912 is not listed on IDEAS
- Michael C Knaus, 2022.
"Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Knaus, Michael C., 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Economics Working Paper Series 2004, University of St. Gallen, School of Economics and Political Science.
- Knaus, Michael C., 2020. "Double Machine Learning Based Program Evaluation under Unconfoundedness," IZA Discussion Papers 13051, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
- Negash, Martha & Swinnen, Johan F.M., 2013.
"Biofuels and food security: Micro-evidence from Ethiopia,"
Energy Policy, Elsevier, vol. 61(C), pages 963-976.
- Negash, Martha, 2012. "Biofuels and Food Security: Micro-evidence from Ethiopia," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126793, International Association of Agricultural Economists.
- Chang Cai & Sandy Dall’Erba, 2021. "On the evaluation of heterogeneous climate change impacts on US agriculture: does group membership matter?," Climatic Change, Springer, vol. 167(1), pages 1-23, July.
- Bjorkegren, Dan & Blumenstock, Joshua & Knight, Samsun, 2022.
"(Machine) Learning What Policies Value,"
CEPR Discussion Papers
17364, C.E.P.R. Discussion Papers.
- Daniel Bjorkegren & Joshua E. Blumenstock & Samsun Knight, 2022. "(Machine) Learning What Policies Value," Papers 2206.00727, arXiv.org.
- Augustine Denteh & Helge Liebert, 2022.
"Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment,"
Papers
2201.07072, arXiv.org, revised Apr 2023.
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," CESifo Working Paper Series 9664, CESifo.
- Denteh, Augustine & Liebert, Helge, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," IZA Discussion Papers 15192, Institute of Labor Economics (IZA).
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Working Papers 2201, Tulane University, Department of Economics.
- Goller, Daniel & Harrer, Tamara & Lechner, Michael & Wolff, Joachim, 2021.
"Active labour market policies for the long-term unemployed: New evidence from causal machine learning,"
Economics Working Paper Series
2108, University of St. Gallen, School of Economics and Political Science.
- Daniel Goller & Tamara Harrer & Michael Lechner & Joachim Wolff, 2021. "Active labour market policies for the long-term unemployed: New evidence from causal machine learning," Papers 2106.10141, arXiv.org, revised May 2023.
- Goller, Daniel & Harrer, Tamara & Lechner, Michael & Wolff, Joachim, 2021. "Active Labour Market Policies for the Long-Term Unemployed: New Evidence from Causal Machine Learning," IZA Discussion Papers 14486, Institute of Labor Economics (IZA).
- Ying Deng & Qianqian Yue & Xin Zhao, 2024. "What Does Air Quality Information Disclosure Deliver and to Whom? Evidence from the Ambient Air Quality Standard (2012) Program in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(11), pages 2859-2887, November.
- Marianne Bertrand & Bruno Crépon & Alicia Marguerie & Patrick Premand, 2021.
"Do Workfare Programs Live Up to Their Promises? Experimental Evidence from Cote D’Ivoire,"
NBER Working Papers
28664, National Bureau of Economic Research, Inc.
- Bertrand,Marianne & Crepon,Bruno Jacques Jean Philippe & Marguerie,Alicia Charlene & Premand,Patrick, 2021. "Do Workfare Programs Live Up to Their Promises ? Experimental Evidence from Côte d’Ivoire," Policy Research Working Paper Series 9611, The World Bank.
- Strittmatter, Anthony, 2023. "What is the value added by using causal machine learning methods in a welfare experiment evaluation?," Labour Economics, Elsevier, vol. 84(C).
- Tatsushi Oka & Shota Yasui & Yuta Hayakawa & Undral Byambadalai, 2024. "Regression Adjustment for Estimating Distributional Treatment Effects in Randomized Controlled Trials," Papers 2407.14074, arXiv.org.
- Anthony Strittmatter, 2018.
"What Is the Value Added by Using Causal Machine Learning Methods in a Welfare Experiment Evaluation?,"
Papers
1812.06533, arXiv.org, revised Dec 2021.
- Strittmatter, Anthony, 2019. "What is the Value Added by using Causal Machine Learning Methods in a Welfare Experiment Evaluation?," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203499, Verein für Socialpolitik / German Economic Association.
- Strittmatter, Anthony, 2019. "What Is the Value Added by Using Causal Machine Learning Methods in a Welfare Experiment Evaluation?," GLO Discussion Paper Series 336, Global Labor Organization (GLO).
- Michael Lechner & Jana Mareckova, 2022. "Modified Causal Forest," Papers 2209.03744, arXiv.org.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jageco:v:75:y:2024:i:1:p:261-279. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0021-857X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.