IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2312.08511.html
   My bibliography  Save this paper

The Relative Value of Prediction in Algorithmic Decision Making

Author

Listed:
  • Juan Carlos Perdomo

Abstract

Algorithmic predictions are increasingly used to inform the allocations of goods and interventions in the public sphere. In these domains, predictions serve as a means to an end. They provide stakeholders with insights into likelihood of future events as a means to improve decision making quality, and enhance social welfare. However, if maximizing welfare is the ultimate goal, prediction is only a small piece of the puzzle. There are various other policy levers a social planner might pursue in order to improve bottom-line outcomes, such as expanding access to available goods, or increasing the effect sizes of interventions. Given this broad range of design decisions, a basic question to ask is: What is the relative value of prediction in algorithmic decision making? How do the improvements in welfare arising from better predictions compare to those of other policy levers? The goal of our work is to initiate the formal study of these questions. Our main results are theoretical in nature. We identify simple, sharp conditions determining the relative value of prediction vis-\`a-vis expanding access, within several statistical models that are popular amongst quantitative social scientists. Furthermore, we illustrate how these theoretical insights may be used to guide the design of algorithmic decision making systems in practice.

Suggested Citation

  • Juan Carlos Perdomo, 2023. "The Relative Value of Prediction in Algorithmic Decision Making," Papers 2312.08511, arXiv.org, revised May 2024.
  • Handle: RePEc:arx:papers:2312.08511
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2312.08511
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edward L. Glaeser & Andrew Hillis & Scott Duke Kominers & Michael Luca, 2016. "Crowdsourcing City Government: Using Tournaments to Improve Inspection Accuracy," American Economic Review, American Economic Association, vol. 106(5), pages 114-118, May.
    2. Aaron Chalfin & Oren Danieli & Andrew Hillis & Zubin Jelveh & Michael Luca & Jens Ludwig & Sendhil Mullainathan, 2016. "Productivity and Selection of Human Capital with Machine Learning," American Economic Review, American Economic Association, vol. 106(5), pages 124-127, May.
    3. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    4. Matthew S. Johnson & David I. Levine & Michael W. Toffel, 2023. "Improving Regulatory Effectiveness through Better Targeting: Evidence from OSHA," American Economic Journal: Applied Economics, American Economic Association, vol. 15(4), pages 30-67, October.
    5. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    6. Juan C. Perdomo & Tolani Britton & Moritz Hardt & Rediet Abebe, 2023. "Difficult Lessons on Social Prediction from Wisconsin Public Schools," Papers 2304.06205, arXiv.org, revised Sep 2023.
    7. M. Hino & E. Benami & N. Brooks, 2018. "Machine learning for environmental monitoring," Nature Sustainability, Nature, vol. 1(10), pages 583-588, October.
    8. Joshua D. Angrist & Victor Lavy, 1999. "Using Maimonides' Rule to Estimate the Effect of Class Size on Scholastic Achievement," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 533-575.
    9. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    10. Emily Aiken & Suzanne Bellue & Dean Karlan & Chris Udry & Joshua E. Blumenstock, 2022. "Machine learning and phone data can improve targeting of humanitarian aid," Nature, Nature, vol. 603(7903), pages 864-870, March.
    11. Jonah E. Rockoff & Brian A. Jacob & Thomas J. Kane & Douglas O. Staiger, 2011. "Can You Recognize an Effective Teacher When You Recruit One?," Education Finance and Policy, MIT Press, vol. 6(1), pages 43-74, January.
    12. Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018. "Human Decisions and Machine Predictions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
    13. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    2. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    3. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    4. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
    5. Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Machine-Learning Approach," Economics working papers 2021-08, Department of Economics, Johannes Kepler University Linz, Austria.
    6. Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Jun 2023.
    7. Yu-Chang Chen & Haitian Xie, 2022. "Personalized Subsidy Rules," Papers 2202.13545, arXiv.org, revised Mar 2022.
    8. Johannes Haushofer & Paul Niehaus & Carlos Paramo & Edward Miguel & Michael W. Walker, 2022. "Targeting Impact versus Deprivation," NBER Working Papers 30138, National Bureau of Economic Research, Inc.
    9. Yuya Sasaki & Takuya Ura, 2020. "Welfare Analysis via Marginal Treatment Effects," Papers 2012.07624, arXiv.org.
    10. Battiston, Pietro & Gamba, Simona & Santoro, Alessandro, 2024. "Machine learning and the optimization of prediction-based policies," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    11. Roshni Sahoo & Stefan Wager, 2022. "Policy Learning with Competing Agents," Papers 2204.01884, arXiv.org, revised Apr 2024.
    12. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
    13. Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Ali Shirali & Rediet Abebe & Moritz Hardt, 2024. "Allocation Requires Prediction Only if Inequality Is Low," Papers 2406.13882, arXiv.org.
    15. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
    16. Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Causal Machine-Learning Approach," Papers 2103.10251, arXiv.org, revised Sep 2021.
    17. Daniel F. Pellatt, 2022. "PAC-Bayesian Treatment Allocation Under Budget Constraints," Papers 2212.09007, arXiv.org, revised Jun 2023.
    18. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    19. Liyang Sun, 2021. "Empirical Welfare Maximization with Constraints," Papers 2103.15298, arXiv.org, revised Sep 2024.
    20. Chunrong Ai & Yue Fang & Haitian Xie, 2024. "Data-driven Policy Learning for a Continuous Treatment," Papers 2402.02535, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2312.08511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.