Enabling Decision-Making with the Modified Causal Forest: Policy Trees for Treatment Assignment
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Katherine Baicker & Amy Finkelstein, 2018. "The Impact of Medicaid Expansion on Voter Participation: Evidence from the Oregon Health Insurance Experiment," NBER Working Papers 25244, National Bureau of Economic Research, Inc.
- Toru Kitagawa & Aleksey Tetenov, 2021.
"Equality-Minded Treatment Choice,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 561-574, March.
- Toru Kitagawa & Aleksey Tetenov, 2017. "Equality-minded treatment choice," CeMMAP working papers CWP10/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2018. "Equality-minded treatment choice," CeMMAP working papers CWP71/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Eric Mbakop & Max Tabord‐Meehan, 2021.
"Model Selection for Treatment Choice: Penalized Welfare Maximization,"
Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
- Eric Mbakop & Max Tabord-Meehan, 2016. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Papers 1609.03167, arXiv.org, revised Dec 2020.
- Toru Kitagawa & Aleksey Tetenov, 2018.
"Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice,"
Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP10/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2017. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP24/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Carlo Alberto Notebooks 402, Collegio Carlo Alberto.
- Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org.
- Guido W. Imbens & Jeffrey M. Wooldridge, 2009.
"Recent Developments in the Econometrics of Program Evaluation,"
Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
- Guido Imbens & Jeffrey M. Wooldridge, 2008. "Recent developments in the econometrics of program evaluation," CeMMAP working papers CWP24/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Wooldridge, Jeffrey M. & Imbens, Guido, 2009. "Recent Developments in the Econometrics of Program Evaluation," Scholarly Articles 3043416, Harvard University Department of Economics.
- Guido M. Imbens & Jeffrey M. Wooldridge, 2008. "Recent Developments in the Econometrics of Program Evaluation," NBER Working Papers 14251, National Bureau of Economic Research, Inc.
- Imbens, Guido W. & Wooldridge, Jeffrey M., 2008. "Recent Developments in the Econometrics of Program Evaluation," IZA Discussion Papers 3640, Institute of Labor Economics (IZA).
- Charles F. Manski, 2004.
"Statistical Treatment Rules for Heterogeneous Populations,"
Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
- Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers 03/03, Institute for Fiscal Studies.
- Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers CWP03/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Amy Finkelstein & Nathaniel Hendren & Erzo F. P. Luttmer, 2019.
"The Value of Medicaid: Interpreting Results from the Oregon Health Insurance Experiment,"
Journal of Political Economy, University of Chicago Press, vol. 127(6), pages 2836-2874.
- Amy Finkelstein & Nathaniel Hendren & Erzo F.P. Luttmer, 2015. "The Value of Medicaid: Interpreting Results from the Oregon Health Insurance Experiment," NBER Working Papers 21308, National Bureau of Economic Research, Inc.
- Luke Keele & Dylan S. Small, 2021. "Comparing Covariate Prioritization via Matching to Machine Learning Methods for Causal Inference Using Five Empirical Applications," The American Statistician, Taylor & Francis Journals, vol. 75(4), pages 355-363, October.
- Dean S. Karlan & Jonathan Zinman, 2008.
"Credit Elasticities in Less-Developed Economies: Implications for Microfinance,"
American Economic Review, American Economic Association, vol. 98(3), pages 1040-1068, June.
- Zinman, Jonathan & Karlan, Dean, 2007. "Credit Elasticities in Less-Developed Economies: Implications for Microfinance," CEPR Discussion Papers 6071, C.E.P.R. Discussion Papers.
- Susan Athey & Stefan Wager, 2021.
"Policy Learning With Observational Data,"
Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Federica Mascolo & Nora Bearth & Fabian Muny & Michael Lechner & Jana Mareckova, 2024. "The Heterogeneous Effects of Active Labour Market Policies in Switzerland," Papers 2410.23322, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Dec 2024.
- Liyang Sun, 2021.
"Empirical Welfare Maximization with Constraints,"
Papers
2103.15298, arXiv.org, revised Sep 2024.
- Liyang Sun, 2024. "Empirical welfare maximization with constraints," CeMMAP working papers 19/24, Institute for Fiscal Studies.
- Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
- Chunrong Ai & Yue Fang & Haitian Xie, 2024. "Data-driven Policy Learning for Continuous Treatments," Papers 2402.02535, arXiv.org, revised Nov 2024.
- Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Oct 2024.
- Toru Kitagawa & Jeff Rowley, 2024. "Bandit algorithms for policy learning: methods, implementation, and welfare-performance," The Japanese Economic Review, Springer, vol. 75(3), pages 407-447, July.
- Manski, Charles F., 2023.
"Probabilistic prediction for binary treatment choice: With focus on personalized medicine,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
- Charles F. Manski, 2021. "Probabilistic Prediction for Binary Treatment Choice: with Focus on Personalized Medicine," NBER Working Papers 29358, National Bureau of Economic Research, Inc.
- Charles F. Manski, 2021. "Probabilistic Prediction for Binary Treatment Choice: with focus on personalized medicine," Papers 2110.00864, arXiv.org.
- Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023.
"Treatment recommendation with distributional targets,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020. "Treatment recommendation with distributional targets," Papers 2005.09717, arXiv.org, revised Apr 2022.
- Susan Athey & Stefan Wager, 2021.
"Policy Learning With Observational Data,"
Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
- Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
- Charles F. Manski, 2021.
"Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald,"
Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
- Charles F. Manski, 2019. "Econometrics For Decision Making: Building Foundations Sketched By Haavelmo And Wald," NBER Working Papers 26596, National Bureau of Economic Research, Inc.
- Charles F. Manski, 2019. "Econometrics For Decision Making: Building Foundations Sketched By Haavelmo And Wald," Papers 1912.08726, arXiv.org, revised Feb 2021.
- Alejandro Sanchez-Becerra, 2023. "Robust inference for the treatment effect variance in experiments using machine learning," Papers 2306.03363, arXiv.org.
- Yuya Sasaki & Takuya Ura, 2020. "Welfare Analysis via Marginal Treatment Effects," Papers 2012.07624, arXiv.org.
- Ryo Okui, 2024. "The 2023 Japanese Economic Association Nakahara Prize: Recipient—Prof. Toru Kitagawa, Brown University and University College London," The Japanese Economic Review, Springer, vol. 75(3), pages 405-406, July.
- Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
- Anders Bredahl Kock & David Preinerstorfer, 2024. "Regularizing Discrimination in Optimal Policy Learning with Distributional Targets," Papers 2401.17909, arXiv.org.
- Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
- Seungjin Han & Julius Owusu & Youngki Shin, 2022. "Statistical Treatment Rules under Social Interaction," Papers 2209.09077, arXiv.org, revised Nov 2022.
- Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.02241. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.