IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v43y2024i4p863-884.html
   My bibliography  Save this article

Doing More with Less: Overcoming Ineffective Long-Term Targeting Using Short-Term Signals

Author

Listed:
  • Ta-Wei Huang

    (Marketing Unit, Harvard Business School, Boston, Massachusetts 02163)

  • Eva Ascarza

    (Marketing Unit, Harvard Business School, Boston, Massachusetts 02163)

Abstract

Firms are increasingly interested in developing targeted interventions for customers with the best response. This requires identifying differences in customer sensitivity, typically through the conditional average treatment effect (CATE) estimation. In theory, to optimize long-term business performance, firms should design targeting policies based on CATE models constructed using long-term outcomes. However, we show theoretically and empirically that this method can fail to improve long-term results, particularly when the desired outcome is the cumulative result of recurring customer actions , like repeated purchases, due to the accumulation of unexplained individual differences over time. To address this challenge, we propose using a surrogate index that leverages short-term outcomes for long-term CATE estimation and policy learning. Moreover, for the creation of this index, we propose the separate imputation strategy, designed to reduce the additional variance caused by the inseparable nature of customer churn and purchase intensity, prevalent in marketing contexts. This involves constructing two distinct surrogate models, one for the observed last purchase time and the other for the observed purchase intensity. Our simulation and real-world application show that (i) using short-term signals instead of the actual long-term outcome significantly improves long-run targeting performance, and (ii) the separate imputation technique outperforms existing imputation approaches.

Suggested Citation

  • Ta-Wei Huang & Eva Ascarza, 2024. "Doing More with Less: Overcoming Ineffective Long-Term Targeting Using Short-Term Signals," Marketing Science, INFORMS, vol. 43(4), pages 863-884, July.
  • Handle: RePEc:inm:ormksc:v:43:y:2024:i:4:p:863-884
    DOI: 10.1287/mksc.2022.0379
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.2022.0379
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.2022.0379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kapil Bawa, 1990. "Modeling Inertia and Variety Seeking Tendencies in Brand Choice Behavior," Marketing Science, INFORMS, vol. 9(3), pages 263-278.
    2. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    3. J. Morgan Jones & Jane T. Landwehr, 1988. "Removing Heterogeneity Bias from Logit Model Estimation," Marketing Science, INFORMS, vol. 7(1), pages 41-59.
    4. Grimmer, Justin & Messing, Solomon & Westwood, Sean J., 2017. "Estimating Heterogeneous Treatment Effects and the Effects of Heterogeneous Treatments with Ensemble Methods," Political Analysis, Cambridge University Press, vol. 25(4), pages 413-434, October.
    5. Roehrig, Charles S, 1988. "Conditions for Identification in Nonparametric and Parametic Models," Econometrica, Econometric Society, vol. 56(2), pages 433-447, March.
    6. Victor Chernozhukov & Mert Demirer & Esther Duflo & Iván Fernández-Val, 2018. "Generic Machine Learning Inference on Heterogeneous Treatment Effects in Randomized Experiments, with an Application to Immunization in India," NBER Working Papers 24678, National Bureau of Economic Research, Inc.
    7. Keane, Michael P, 1997. "Modeling Heterogeneity and State Dependence in Consumer Choice Behavior," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 310-327, July.
    8. Brown, Bryan W, 1983. "The Identification Problem in Systems Nonlinear in the Variables," Econometrica, Econometric Society, vol. 51(1), pages 175-196, January.
    9. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    10. Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019. "Non-separable models with high-dimensional data," Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
    11. Aurélie Lemmens & Sunil Gupta, 2020. "Managing Churn to Maximize Profits," Marketing Science, INFORMS, vol. 39(5), pages 956-973, September.
    12. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    13. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    14. Jean‐Pierre Dubé & Günter J. Hitsch & Peter E. Rossi, 2010. "State dependence and alternative explanations for consumer inertia," RAND Journal of Economics, RAND Corporation, vol. 41(3), pages 417-445, September.
    15. Stefan Hoderlein & Enno Mammen, 2007. "Identification of Marginal Effects in Nonseparable Models Without Monotonicity," Econometrica, Econometric Society, vol. 75(5), pages 1513-1518, September.
    16. X Nie & S Wager, 2021. "Quasi-oracle estimation of heterogeneous treatment effects [TensorFlow: A system for large-scale machine learning]," Biometrika, Biometrika Trust, vol. 108(2), pages 299-319.
    17. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    18. Peter S. Fader & Bruce G. S. Hardie & Jen Shang, 2010. "Customer-Base Analysis in a Discrete-Time Noncontractual Setting," Marketing Science, INFORMS, vol. 29(6), pages 1086-1108, 11-12.
    19. Andrew Chesher, 2003. "Identification in Nonseparable Models," Econometrica, Econometric Society, vol. 71(5), pages 1405-1441, September.
    20. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    21. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    22. Füsun Gönül & Kannan Srinivasan, 1993. "Modeling Multiple Sources of Heterogeneity in Multinomial Logit Models: Methodological and Managerial Issues," Marketing Science, INFORMS, vol. 12(3), pages 213-229.
    23. Stefan Hoderlein & Enno Mammen, 2009. "Identification and estimation of local average derivatives in non-separable models without monotonicity," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 1-25, March.
    24. Peter S. Fader & Bruce G. S. Hardie, 2010. "Customer-Base Valuation in a Contractual Setting: The Perils of Ignoring Heterogeneity," Marketing Science, INFORMS, vol. 29(1), pages 85-93, 01-02.
    25. Duncan Simester & Artem Timoshenko & Spyros I. Zoumpoulis, 2020. "Targeting Prospective Customers: Robustness of Machine-Learning Methods to Typical Data Challenges," Management Science, INFORMS, vol. 66(6), pages 2495-2522, June.
    26. L W Miratrix & S Wager & J R Zubizarreta, 2018. "Shape-constrained partial identification of a population mean under unknown probabilities of sample selection," Biometrika, Biometrika Trust, vol. 105(1), pages 103-114.
    27. P. B. Seetharaman, 2004. "Modeling Multiple Sources of State Dependence in Random Utility Models: A Distributed Lag Approach," Marketing Science, INFORMS, vol. 23(2), pages 263-271, April.
    28. Jean-Pierre Dubé & Zheng Fang & Nathan Fong & Xueming Luo, 2017. "Competitive Price Targeting with Smartphone Coupons," Marketing Science, INFORMS, vol. 36(6), pages 944-975, November.
    29. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, November.
    30. Chernozhukov, Victor & Imbens, Guido W. & Newey, Whitney K., 2007. "Instrumental variable estimation of nonseparable models," Journal of Econometrics, Elsevier, vol. 139(1), pages 4-14, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anya Shchetkina & Ron Berman, 2024. "When Is Heterogeneity Actionable for Personalization?," Papers 2411.16552, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blundell, Richard & Kristensen, Dennis & Matzkin, Rosa, 2014. "Bounding quantile demand functions using revealed preference inequalities," Journal of Econometrics, Elsevier, vol. 179(2), pages 112-127.
    2. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    3. Giovanni Forchini, 2014. "A General Result on Observational Equivalence in a Class of Nonparametric Structural Equations Models," School of Economics Discussion Papers 0114, School of Economics, University of Surrey.
    4. Hubner, Stefan, 2016. "Topics in nonparametric identification and estimation," Other publications TiSEM 08fce56b-3193-46e0-871b-0, Tilburg University, School of Economics and Management.
    5. Guhl, Daniel & Baumgartner, Bernhard & Kneib, Thomas & Steiner, Winfried J., 2018. "Estimating time-varying parameters in brand choice models: A semiparametric approach," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 394-414.
    6. Giovanni Forchini, 2012. "Structural Equations and Invariance," School of Economics Discussion Papers 0312, School of Economics, University of Surrey.
    7. Christopher Adjaho & Timothy Christensen, 2022. "Externally Valid Policy Choice," Papers 2205.05561, arXiv.org, revised Jul 2023.
    8. Nir Billfeld & Moshe Kim, 2024. "Context-dependent Causality (the Non-Nonotonic Case)," Papers 2404.05021, arXiv.org.
    9. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    10. Stefan Hoderlein & Yuya Sasaki, 2013. "Outcome Conditioned Treatment Effects," Boston College Working Papers in Economics 840, Boston College Department of Economics.
    11. Zequn Jin & Lihua Lin & Zhengyu Zhang, 2022. "Identification and Auto-debiased Machine Learning for Outcome Conditioned Average Structural Derivatives," Papers 2211.07903, arXiv.org.
    12. Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019. "Non-separable models with high-dimensional data," Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
    13. José M. Labeaga & Mercedes Martos-Partal, 2007. "A Proposal to Distinguish State Dependence and Unobserved Heterogeneity in Binary Brand Choice Models," Working Papers 2007-02, FEDEA.
    14. Halbert White & Karim Chalak, 2008. "Identifying Structural Effects in Nonseparable Systems Using Covariates," Boston College Working Papers in Economics 734, Boston College Department of Economics.
    15. Timothy J. Richards & Bradley J. Rickard, 2021. "Dynamic model of beer pricing and buyouts," Agribusiness, John Wiley & Sons, Ltd., vol. 37(4), pages 685-712, October.
    16. Dan Horsky & Sanjog Misra & Paul Nelson, 2006. "Observed and Unobserved Preference Heterogeneity in Brand-Choice Models," Marketing Science, INFORMS, vol. 25(4), pages 322-335, 07-08.
    17. Mira Frick & Ryota Iijima & Tomasz Strzalecki, 2019. "Dynamic Random Utility," Econometrica, Econometric Society, vol. 87(6), pages 1941-2002, November.
    18. Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016. "Testing for monotonicity in unobservables under unconfoundedness," Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
    19. Bokelmann, Björn & Lessmann, Stefan, 2024. "Improving uplift model evaluation on randomized controlled trial data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 691-707.
    20. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:43:y:2024:i:4:p:863-884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.