Generalizability with ignorance in mind: learning what we do (not) know for archetypes discovery
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Michael Gechter & Keisuke Hirano & Jean Lee & Mahreen Mahmud & Orville Mondal & Jonathan Morduch & Saravana Ravindran & Abu S. Shonchoy, 2024. "Selecting Experimental Sites for External Validity," Papers 2405.13241, arXiv.org.
- Rachael Meager, 2022. "Aggregating Distributional Treatment Effects: A Bayesian Hierarchical Analysis of the Microcredit Literature," American Economic Review, American Economic Association, vol. 112(6), pages 1818-1847, June.
- Tommaso Crosta & Dean Karlan & Finley Ong & Julius Rüschenpöhler & Christopher R. Udry, 2024. "Unconditional Cash Transfers: A Bayesian Meta-Analysis of Randomized Evaluations in Low and Middle Income Countries," NBER Working Papers 32779, National Bureau of Economic Research, Inc.
- Toru Kitagawa & Aleksey Tetenov, 2021.
"Equality-Minded Treatment Choice,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 561-574, March.
- Toru Kitagawa & Aleksey Tetenov, 2017. "Equality-minded treatment choice," CeMMAP working papers CWP10/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2018. "Equality-minded treatment choice," CeMMAP working papers CWP71/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2024.
"Inference on Winners,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 139(1), pages 305-358.
- Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2018. "Inference on winners," CeMMAP working papers CWP31/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2019. "Inference on Winners," NBER Working Papers 25456, National Bureau of Economic Research, Inc.
- Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2020. "Inference on winners," CeMMAP working papers CWP43/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2018. "Inference on winners," CeMMAP working papers CWP73/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Eric Mbakop & Max Tabord‐Meehan, 2021.
"Model Selection for Treatment Choice: Penalized Welfare Maximization,"
Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
- Eric Mbakop & Max Tabord-Meehan, 2016. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Papers 1609.03167, arXiv.org, revised Dec 2020.
- Clare Balboni & Oriana Bandiera & Robin Burgess & Maitreesh Ghatak & Anton Heil, 2023.
"Why Do People Stay Poor?,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 137(2), pages 785-844.
- Bandiera, Oriana & Ghatak, Maitreesh & Balboni, Clare & Heil, Anton, 2020. "Why do people stay poor?," CEPR Discussion Papers 14534, C.E.P.R. Discussion Papers.
- Clare Balboni & Oriana Bandiera & Robin Burgess & Maitreesh Ghatak & Anton Heil, 2020. "Why Do People Stay Poor?," STICERD - Economic Organisation and Public Policy Discussion Papers Series 067, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Baboni, Clare & Bandiera, Oriana & Burgess, Robin & Ghatak, Maitreesh & Heil, Anton, 2022. "Why do people stay poor?," LSE Research Online Documents on Economics 111839, London School of Economics and Political Science, LSE Library.
- Clare A. Balboni & Oriana Bandiera & Robin Burgess & Maitreesh Ghatak & Anton Heil, 2021. "Why do people stay poor?," NBER Working Papers 29340, National Bureau of Economic Research, Inc.
- Hristos Doucouliagos & Mehmet Ali Ulubaşoğlu, 2008.
"Democracy and Economic Growth: A Meta‐Analysis,"
American Journal of Political Science, John Wiley & Sons, vol. 52(1), pages 61-83, January.
- Doucouliagos, H & Ulubasoglu, Mehmet, 2006. "Democracy and Economic Growth: A Meta-Analysis," Working Papers eco_2006_04, Deakin University, Department of Economics.
- Toru Kitagawa & Aleksey Tetenov, 2018.
"Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice,"
Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP10/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2017. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP24/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Carlo Alberto Notebooks 402, Collegio Carlo Alberto.
- Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
- Victor Chernozhukov & Mert Demirer & Esther Duflo & Iván Fernández-Val, 2018. "Generic Machine Learning Inference on Heterogeneous Treatment Effects in Randomized Experiments, with an Application to Immunization in India," NBER Working Papers 24678, National Bureau of Economic Research, Inc.
- Clare Balboni & Oriana Bandiera & Robin Burgess & Maitreesh Ghatak & Anton Heil, 2022. "Why Do People Stay Poor? [“Exploring Poverty Traps and Social Exclusion in South Africa Using Qualitative and Quantitative Data,”]," The Quarterly Journal of Economics, Oxford University Press, vol. 137(2), pages 785-844.
- Charles F. Manski, 2004.
"Statistical Treatment Rules for Heterogeneous Populations,"
Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
- Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers 03/03, Institute for Fiscal Studies.
- Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers CWP03/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Isaiah Andrews & Jesse M. Shapiro, 2021.
"A Model of Scientific Communication,"
Econometrica, Econometric Society, vol. 89(5), pages 2117-2142, September.
- Isaiah Andrews & Jesse M. Shapiro, 2020. "A Model of Scientific Communication," NBER Working Papers 26824, National Bureau of Economic Research, Inc.
- Susan Athey & Stefan Wager, 2021.
"Policy Learning With Observational Data,"
Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
- Jos'e Luis Montiel Olea & Brenda Prallon & Chen Qiu & Jorg Stoye & Yiwei Sun, 2024. "Externally Valid Selection of Experimental Sites via the k-Median Problem," Papers 2408.09187, arXiv.org.
- Johannes Haushofer & Paul Niehaus & Carlos Paramo & Edward Miguel & Michael W. Walker, 2022.
"Targeting Impact versus Deprivation,"
NBER Working Papers
30138, National Bureau of Economic Research, Inc.
- Haushofer, Johannes & Niehaus, Paul & Paramo, Carlos & Miguel, Edward & Walker, Michael W, 2022. "Targeting Impact Versus Deprivation," Department of Economics, Working Paper Series qt07j8n9vz, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Abhijit Banerjee & Dean Karlan & Jonathan Zinman, 2015. "Six Randomized Evaluations of Microcredit: Introduction and Further Steps," American Economic Journal: Applied Economics, American Economic Association, vol. 7(1), pages 1-21, January.
- Paluck, Elizabeth Levy & Green, Seth A. & Green, Donald P., 2019. "The contact hypothesis re-evaluated," Behavioural Public Policy, Cambridge University Press, vol. 3(2), pages 129-158, November.
- James Bisbee & Rajeev Dehejia & Cristian Pop-Eleches & Cyrus Samii, 2017.
"Local Instruments, Global Extrapolation: External Validity of the Labor Supply-Fertility Local Average Treatment Effect,"
Journal of Labor Economics, University of Chicago Press, vol. 35(S1), pages 99-147.
- James Bisbee & Rajeev Dehejia & Cristian Pop-Eleches & Cyrus Samii, 2015. "Local Instruments, Global Extrapolation: External Validity of the Labor Supply-Fertility Local Average Treatment Effect," NBER Working Papers 21663, National Bureau of Economic Research, Inc.
- Jann Spiess & Vasilis Syrgkanis & Victor Yaneng Wang, 2021. "Finding Subgroups with Significant Treatment Effects," Papers 2103.07066, arXiv.org, revised Dec 2023.
- Abhijit Banerjee & Arun G. Chandrasekhar & Suresh Dalpath & Esther Duflo & John Floretta & Matthew O. Jackson & Harini Kannan & Francine N. Loza & Anirudh Sankar & Anna Schrimpf & Maheshwor Shrestha, 2021.
"Selecting the Most Effective Nudge: Evidence from a Large-Scale Experiment on Immunization,"
NBER Working Papers
28726, National Bureau of Economic Research, Inc.
- Duflo, Esther & Banerjee, Abhijit & Floretta, John & Schrimpf, Anna & Sankar, Anirudh & Loza, Francine & Kannan, Harini & Jackson, Matthew O. & Chandrasekhar, Arun G. & Shrestha, Maheshwor & Dalpath, , 2021. "Selecting the Most Effective Nudge: Evidence from a Large-Scale Experiment on Immunization," CEPR Discussion Papers 16084, C.E.P.R. Discussion Papers.
- Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Dec 2024.
- Johannes Haushofer & Paul Niehaus & Carlos Paramo & Edward Miguel & Michael W. Walker, 2022.
"Targeting Impact versus Deprivation,"
NBER Working Papers
30138, National Bureau of Economic Research, Inc.
- Haushofer, Johannes & Niehaus, Paul & Paramo, Carlos & Miguel, Edward & Walker, Michael W, 2022. "Targeting Impact Versus Deprivation," Department of Economics, Working Paper Series qt07j8n9vz, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
- Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
- Chunrong Ai & Yue Fang & Haitian Xie, 2024. "Data-driven Policy Learning for Continuous Treatments," Papers 2402.02535, arXiv.org, revised Nov 2024.
- Ta-Wei Huang & Eva Ascarza, 2024. "Doing More with Less: Overcoming Ineffective Long-Term Targeting Using Short-Term Signals," Marketing Science, INFORMS, vol. 43(4), pages 863-884, July.
- Susan Athey & Stefan Wager, 2021.
"Policy Learning With Observational Data,"
Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
- Henrika Langen & Martin Huber, 2022. "How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign," Papers 2204.10820, arXiv.org, revised Jun 2022.
- Augustine Denteh & Helge Liebert, 2022.
"Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment,"
Papers
2201.07072, arXiv.org, revised Apr 2023.
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," CESifo Working Paper Series 9664, CESifo.
- Denteh, Augustine & Liebert, Helge, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," IZA Discussion Papers 15192, Institute of Labor Economics (IZA).
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Working Papers 2201, Tulane University, Department of Economics.
- Alejandro Sanchez-Becerra, 2023. "Robust inference for the treatment effect variance in experiments using machine learning," Papers 2306.03363, arXiv.org.
- Achim Ahrens & Alessandra Stampi‐Bombelli & Selina Kurer & Dominik Hangartner, 2024.
"Optimal multi‐action treatment allocation: A two‐phase field experiment to boost immigrant naturalization,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1379-1395, November.
- Achim Ahrens & Alessandra Stampi-Bombelli & Selina Kurer & Dominik Hangartner, 2023. "Optimal multi-action treatment allocation: A two-phase field experiment to boost immigrant naturalization," Papers 2305.00545, arXiv.org, revised Feb 2024.
- Anders Bredahl Kock & David Preinerstorfer, 2024. "Regularizing Discrimination in Optimal Policy Learning with Distributional Targets," Papers 2401.17909, arXiv.org.
- Hugo Bodory & Federica Mascolo & Michael Lechner, 2024. "Enabling Decision-Making with the Modified Causal Forest: Policy Trees for Treatment Assignment," Papers 2406.02241, arXiv.org.
- Timothy Armstrong & Martin Weidner & Andrei Zeleneev, 2024. "Robust estimation and inference in panels with interactive fixed effects," IFS Working Papers WCWP28/24, Institute for Fiscal Studies.
- Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
- Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Oct 2024.
- Toru Kitagawa & Jeff Rowley, 2024. "Bandit algorithms for policy learning: methods, implementation, and welfare-performance," The Japanese Economic Review, Springer, vol. 75(3), pages 407-447, July.
- Federico Crippa, 2024. "Regret Analysis in Threshold Policy Design," Papers 2404.11767, arXiv.org.
- Julia Hatamyar & Noemi Kreif, 2023. "Policy Learning with Rare Outcomes," Papers 2302.05260, arXiv.org, revised Oct 2023.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2025-02-10 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.13355. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.