IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.13355.html
   My bibliography  Save this paper

Generalizability with ignorance in mind: learning what we do (not) know for archetypes discovery

Author

Listed:
  • Emily Breza
  • Arun G. Chandrasekhar
  • Davide Viviano

Abstract

When studying policy interventions, researchers are often interested in two related goals: i) learning for which types of individuals the program has the largest effects (heterogeneity) and ii) understanding whether those patterns of treatment effects have predictive power across environments (generalizability). To that end, we develop a framework to learn from the data how to partition observations into groups of individual and environmental characteristics whose effects are generalizable for others - a set of generalizable archetypes. Our view is that implicit in the task of archetypal discovery is detecting those contexts where effects do not generalize and where researchers should collect more evidence before drawing inference on treatment effects. We introduce a method that jointly estimates when and how a prediction can be formed and when, instead, researchers should admit ignorance and elicit further evidence before making predictions. We provide both a decision-theoretic and Bayesian foundation of our procedure. We derive finite-sample (frequentist) regret guarantees, asymptotic theory for inference, and discuss computational properties. We illustrate the benefits of our procedure over existing alternatives that would fail to admit ignorance and force pooling across all units by re-analyzing a multifaceted program targeted towards the poor across six different countries.

Suggested Citation

  • Emily Breza & Arun G. Chandrasekhar & Davide Viviano, 2025. "Generalizability with ignorance in mind: learning what we do (not) know for archetypes discovery," Papers 2501.13355, arXiv.org.
  • Handle: RePEc:arx:papers:2501.13355
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.13355
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Gechter & Keisuke Hirano & Jean Lee & Mahreen Mahmud & Orville Mondal & Jonathan Morduch & Saravana Ravindran & Abu S. Shonchoy, 2024. "Selecting Experimental Sites for External Validity," Papers 2405.13241, arXiv.org.
    2. Rachael Meager, 2022. "Aggregating Distributional Treatment Effects: A Bayesian Hierarchical Analysis of the Microcredit Literature," American Economic Review, American Economic Association, vol. 112(6), pages 1818-1847, June.
    3. Tommaso Crosta & Dean Karlan & Finley Ong & Julius Rüschenpöhler & Christopher R. Udry, 2024. "Unconditional Cash Transfers: A Bayesian Meta-Analysis of Randomized Evaluations in Low and Middle Income Countries," NBER Working Papers 32779, National Bureau of Economic Research, Inc.
    4. Toru Kitagawa & Aleksey Tetenov, 2021. "Equality-Minded Treatment Choice," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 561-574, March.
    5. Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2024. "Inference on Winners," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 139(1), pages 305-358.
    6. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    7. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    8. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    9. Clare Balboni & Oriana Bandiera & Robin Burgess & Maitreesh Ghatak & Anton Heil, 2023. "Why Do People Stay Poor?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 137(2), pages 785-844.
    10. Hristos Doucouliagos & Mehmet Ali Ulubaşoğlu, 2008. "Democracy and Economic Growth: A Meta‐Analysis," American Journal of Political Science, John Wiley & Sons, vol. 52(1), pages 61-83, January.
    11. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    12. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    13. Victor Chernozhukov & Mert Demirer & Esther Duflo & Iván Fernández-Val, 2018. "Generic Machine Learning Inference on Heterogeneous Treatment Effects in Randomized Experiments, with an Application to Immunization in India," NBER Working Papers 24678, National Bureau of Economic Research, Inc.
    14. Clare Balboni & Oriana Bandiera & Robin Burgess & Maitreesh Ghatak & Anton Heil, 2022. "Why Do People Stay Poor? [“Exploring Poverty Traps and Social Exclusion in South Africa Using Qualitative and Quantitative Data,”]," The Quarterly Journal of Economics, Oxford University Press, vol. 137(2), pages 785-844.
    15. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    16. Isaiah Andrews & Jesse M. Shapiro, 2021. "A Model of Scientific Communication," Econometrica, Econometric Society, vol. 89(5), pages 2117-2142, September.
    17. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    18. Jos'e Luis Montiel Olea & Brenda Prallon & Chen Qiu & Jorg Stoye & Yiwei Sun, 2024. "Externally Valid Selection of Experimental Sites via the k-Median Problem," Papers 2408.09187, arXiv.org.
    19. Johannes Haushofer & Paul Niehaus & Carlos Paramo & Edward Miguel & Michael W. Walker, 2022. "Targeting Impact versus Deprivation," NBER Working Papers 30138, National Bureau of Economic Research, Inc.
    20. Abhijit Banerjee & Dean Karlan & Jonathan Zinman, 2015. "Six Randomized Evaluations of Microcredit: Introduction and Further Steps," American Economic Journal: Applied Economics, American Economic Association, vol. 7(1), pages 1-21, January.
    21. Paluck, Elizabeth Levy & Green, Seth A. & Green, Donald P., 2019. "The contact hypothesis re-evaluated," Behavioural Public Policy, Cambridge University Press, vol. 3(2), pages 129-158, November.
    22. James Bisbee & Rajeev Dehejia & Cristian Pop-Eleches & Cyrus Samii, 2017. "Local Instruments, Global Extrapolation: External Validity of the Labor Supply-Fertility Local Average Treatment Effect," Journal of Labor Economics, University of Chicago Press, vol. 35(S1), pages 99-147.
    23. Jann Spiess & Vasilis Syrgkanis & Victor Yaneng Wang, 2021. "Finding Subgroups with Significant Treatment Effects," Papers 2103.07066, arXiv.org, revised Dec 2023.
    24. Abhijit Banerjee & Arun G. Chandrasekhar & Suresh Dalpath & Esther Duflo & John Floretta & Matthew O. Jackson & Harini Kannan & Francine N. Loza & Anirudh Sankar & Anna Schrimpf & Maheshwor Shrestha, 2021. "Selecting the Most Effective Nudge: Evidence from a Large-Scale Experiment on Immunization," NBER Working Papers 28726, National Bureau of Economic Research, Inc.
    25. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Dec 2024.
    2. Johannes Haushofer & Paul Niehaus & Carlos Paramo & Edward Miguel & Michael W. Walker, 2022. "Targeting Impact versus Deprivation," NBER Working Papers 30138, National Bureau of Economic Research, Inc.
    3. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    4. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
    5. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    6. Chunrong Ai & Yue Fang & Haitian Xie, 2024. "Data-driven Policy Learning for Continuous Treatments," Papers 2402.02535, arXiv.org, revised Nov 2024.
    7. Ta-Wei Huang & Eva Ascarza, 2024. "Doing More with Less: Overcoming Ineffective Long-Term Targeting Using Short-Term Signals," Marketing Science, INFORMS, vol. 43(4), pages 863-884, July.
    8. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    9. Henrika Langen & Martin Huber, 2022. "How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign," Papers 2204.10820, arXiv.org, revised Jun 2022.
    10. Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Papers 2201.07072, arXiv.org, revised Apr 2023.
    11. Alejandro Sanchez-Becerra, 2023. "Robust inference for the treatment effect variance in experiments using machine learning," Papers 2306.03363, arXiv.org.
    12. Achim Ahrens & Alessandra Stampi‐Bombelli & Selina Kurer & Dominik Hangartner, 2024. "Optimal multi‐action treatment allocation: A two‐phase field experiment to boost immigrant naturalization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1379-1395, November.
    13. Anders Bredahl Kock & David Preinerstorfer, 2024. "Regularizing Discrimination in Optimal Policy Learning with Distributional Targets," Papers 2401.17909, arXiv.org.
    14. Hugo Bodory & Federica Mascolo & Michael Lechner, 2024. "Enabling Decision-Making with the Modified Causal Forest: Policy Trees for Treatment Assignment," Papers 2406.02241, arXiv.org.
    15. Timothy Armstrong & Martin Weidner & Andrei Zeleneev, 2024. "Robust estimation and inference in panels with interactive fixed effects," IFS Working Papers WCWP28/24, Institute for Fiscal Studies.
    16. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    17. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Oct 2024.
    18. Toru Kitagawa & Jeff Rowley, 2024. "Bandit algorithms for policy learning: methods, implementation, and welfare-performance," The Japanese Economic Review, Springer, vol. 75(3), pages 407-447, July.
    19. Federico Crippa, 2024. "Regret Analysis in Threshold Policy Design," Papers 2404.11767, arXiv.org.
    20. Julia Hatamyar & Noemi Kreif, 2023. "Policy Learning with Rare Outcomes," Papers 2302.05260, arXiv.org, revised Oct 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.13355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.