IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2211.01537.html
   My bibliography  Save this paper

Stochastic Treatment Choice with Empirical Welfare Updating

Author

Listed:
  • Toru Kitagawa
  • Hugo Lopez
  • Jeff Rowley

Abstract

This paper proposes a novel method to estimate individualised treatment assignment rules. The method is designed to find rules that are stochastic, reflecting uncertainty in estimation of an assignment rule and about its welfare performance. Our approach is to form a prior distribution over assignment rules, not over data generating processes, and to update this prior based upon an empirical welfare criterion, not likelihood. The social planner then assigns treatment by drawing a policy from the resulting posterior. We show analytically a welfare-optimal way of updating the prior using empirical welfare; this posterior is not feasible to compute, so we propose a variational Bayes approximation for the optimal posterior. We characterise the welfare regret convergence of the assignment rule based upon this variational Bayes approximation, showing that it converges to zero at a rate of ln(n)/sqrt(n). We apply our methods to experimental data from the Job Training Partnership Act Study to illustrate the implementation of our methods.

Suggested Citation

  • Toru Kitagawa & Hugo Lopez & Jeff Rowley, 2022. "Stochastic Treatment Choice with Empirical Welfare Updating," Papers 2211.01537, arXiv.org, revised Feb 2023.
  • Handle: RePEc:arx:papers:2211.01537
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2211.01537
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daido Kido, 2022. "Distributionally Robust Policy Learning with Wasserstein Distance," Papers 2205.04637, arXiv.org, revised Aug 2022.
    2. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
    3. Keisuke Hirano & Jack R. Porter, 2009. "Asymptotics for Statistical Treatment Rules," Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
    4. Dehejia, Rajeev H., 2005. "Program evaluation as a decision problem," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 141-173.
    5. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    6. Christopher Adjaho & Timothy Christensen, 2022. "Externally Valid Policy Choice," Papers 2205.05561, arXiv.org, revised Jul 2023.
    7. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    8. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    9. Yuya Sasaki & Takuya Ura, 2020. "Welfare Analysis via Marginal Treatment Effects," Papers 2012.07624, arXiv.org.
    10. Maximilian Kasy, 2016. "Partial Identification, Distributional Preferences, and the Welfare Ranking of Policies," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 111-131, March.
    11. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    12. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    13. Xinkun Nie & Emma Brunskill & Stefan Wager, 2021. "Learning When-to-Treat Policies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 392-409, January.
    14. Kohei Yata, 2021. "Optimal Decision Rules Under Partial Identification," Papers 2111.04926, arXiv.org, revised Aug 2023.
    15. Karl Schlag, 2006. "ELEVEN - Tests needed for a Recommendation," Economics Working Papers ECO2006/2, European University Institute.
    16. Tetenov, Aleksey, 2012. "Statistical treatment choice based on asymmetric minimax regret criteria," Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
    17. Yan Liu, 2022. "Policy Learning under Endogeneity Using Instrumental Variables," Papers 2206.09883, arXiv.org, revised Mar 2024.
    18. Howard S. Bloom & Larry L. Orr & Stephen H. Bell & George Cave & Fred Doolittle & Winston Lin & Johannes M. Bos, 1997. "The Benefits and Costs of JTPA Title II-A Programs: Key Findings from the National Job Training Partnership Act Study," Journal of Human Resources, University of Wisconsin Press, vol. 32(3), pages 549-576.
    19. Takuya Ishihara & Toru Kitagawa, 2021. "Evidence Aggregation for Treatment Choice," Papers 2108.06473, arXiv.org, revised Jul 2024.
    20. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    21. P. G. Bissiri & C. C. Holmes & S. G. Walker, 2016. "A general framework for updating belief distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1103-1130, November.
    22. Liyang Sun, 2021. "Empirical Welfare Maximization with Constraints," Papers 2103.15298, arXiv.org, revised Sep 2024.
    23. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirill Ponomarev & Vira Semenova, 2024. "On the Lower Confidence Band for the Optimal Welfare," Papers 2410.07443, arXiv.org, revised Oct 2024.
    2. Yu-Chang Chen & Haitian Xie, 2022. "Personalized Subsidy Rules," Papers 2202.13545, arXiv.org, revised Mar 2022.
    3. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Oct 2024.
    4. Takuya Ishihara & Toru Kitagawa, 2021. "Evidence Aggregation for Treatment Choice," Papers 2108.06473, arXiv.org, revised Jul 2024.
    5. Undral Byambadalai, 2022. "Identification and Inference for Welfare Gains without Unconfoundedness," Papers 2207.04314, arXiv.org.
    6. Yuya Sasaki & Takuya Ura, 2020. "Welfare Analysis via Marginal Treatment Effects," Papers 2012.07624, arXiv.org.
    7. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    8. Toru Kitagawa & Aleksey Tetenov, 2017. "Equality-minded treatment choice," CeMMAP working papers 10/17, Institute for Fiscal Studies.
    9. Toru Kitagawa & Aleksey Tetenov, 2021. "Equality-Minded Treatment Choice," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 561-574, March.
    10. Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers 10/15, Institute for Fiscal Studies.
    11. Kohei Yata, 2021. "Optimal Decision Rules Under Partial Identification," Papers 2111.04926, arXiv.org, revised Aug 2023.
    12. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    13. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    14. Firpo, Sergio & Galvao, Antonio F. & Kobus, Martyna & Parker, Thomas & Rosa-Dias, Pedro, 2020. "Loss Aversion and the Welfare Ranking of Policy Interventions," IZA Discussion Papers 13176, Institute of Labor Economics (IZA).
    15. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    16. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
    17. Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Dec 2024.
    18. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
    19. Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Toru Kitagawa & Shosei Sakaguchi & Aleksey Tetenov, 2021. "Constrained Classification and Policy Learning," Papers 2106.12886, arXiv.org, revised Jul 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2211.01537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.