IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2104.13367.html
   My bibliography  Save this paper

A model of multiple hypothesis testing

Author

Listed:
  • Davide Viviano
  • Kaspar Wuthrich
  • Paul Niehaus

Abstract

Multiple hypothesis testing practices vary widely, without consensus on which are appropriate when. This paper provides an economic foundation for these practices designed to capture processes of scientific communication, such as regulatory approval on the basis of clinical trials. In studies of multiple treatments or sub-populations, adjustments may be appropriate depending on scale economies in the research production function, with control of classical notions of compound errors emerging in some but not all cases. In studies with multiple outcomes, indexing is appropriate and adjustments to test levels may be appropriate if the intended audience is heterogeneous. Data on actual costs in the drug approval process suggest both that some adjustment is warranted in that setting and that standard procedures are overly conservative.

Suggested Citation

  • Davide Viviano & Kaspar Wuthrich & Paul Niehaus, 2021. "A model of multiple hypothesis testing," Papers 2104.13367, arXiv.org, revised Apr 2024.
  • Handle: RePEc:arx:papers:2104.13367
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2104.13367
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anderson, Michael L., 2008. "Multiple Inference and Gender Differences in the Effects of Early Intervention: A Reevaluation of the Abecedarian, Perry Preschool, and Early Training Projects," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1481-1495.
    2. John A. List & Azeem M. Shaikh & Yang Xu, 2019. "Multiple hypothesis testing in experimental economics," Experimental Economics, Springer;Economic Science Association, vol. 22(4), pages 773-793, December.
    3. Graham Elliott & Ulrich K. Müller & Mark W. Watson, 2015. "Nearly Optimal Tests When a Nuisance Parameter Is Present Under the Null Hypothesis," Econometrica, Econometric Society, vol. 83, pages 771-811, March.
    4. Keisuke Hirano & Jack R. Porter, 2009. "Asymptotics for Statistical Treatment Rules," Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
    5. Emeric Henry & Marco Ottaviani, 2019. "Research and the Approval Process: The Organization of Persuasion," American Economic Review, American Economic Association, vol. 109(3), pages 911-955, March.
    6. Emir Kamenica & Matthew Gentzkow, 2011. "Bayesian Persuasion," American Economic Review, American Economic Association, vol. 101(6), pages 2590-2615, October.
    7. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    8. Romano Joseph P. & Shaikh Azeem & Wolf Michael, 2011. "Consonance and the Closure Method in Multiple Testing," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-25, February.
    9. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    10. Tetenov, Aleksey, 2012. "Statistical treatment choice based on asymmetric minimax regret criteria," Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
    11. Soohyung Lee & Azeem M. Shaikh, 2014. "Multiple Testing And Heterogeneous Treatment Effects: Re‐Evaluating The Effect Of Progresa On School Enrollment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(4), pages 612-626, June.
    12. G�nther Fink & Margaret McConnell & Sebastian Vollmer, 2014. "Testing for heterogeneous treatment effects in experimental data: false discovery risks and correction procedures," Journal of Development Effectiveness, Taylor & Francis Journals, vol. 6(1), pages 44-57, January.
    13. Alexander Frankel & Maximilian Kasy, 2022. "Which Findings Should Be Published?," American Economic Journal: Microeconomics, American Economic Association, vol. 14(1), pages 1-38, February.
    14. Isaiah Andrews & Jesse M. Shapiro, 2021. "A Model of Scientific Communication," Econometrica, Econometric Society, vol. 89(5), pages 2117-2142, September.
    15. Romano, Joseph P. & Wolf, Michael, 2016. "Efficient computation of adjusted p-values for resampling-based stepdown multiple testing," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 38-40.
    16. Karthik Muralidharan & Mauricio Romero & Kaspar Wüthrich, 2019. "Factorial Designs, Model Selection, and (Incorrect) Inference in Randomized Experiments," NBER Working Papers 26562, National Bureau of Economic Research, Inc.
    17. Sylvain Chassang & Gerard Padro I Miquel & Erik Snowberg, 2012. "Selective Trials: A Principal-Agent Approach to Randomized Controlled Experiments," American Economic Review, American Economic Association, vol. 102(4), pages 1279-1309, June.
    18. Alfredo Di Tillio & Marco Ottaviani & Peter Norman Sørensen, 2017. "Persuasion Bias in Science: Can Economics Help?," Economic Journal, Royal Economic Society, vol. 127(605), pages 266-304, October.
    19. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    20. John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205, February.
    21. Aleksey Tetenov, 2016. "An economic theory of statistical testing," CeMMAP working papers CWP50/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    22. Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2010. "Hypothesis Testing in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 75-104, September.
    23. repec:hal:spmain:info:hdl:2441/1gr6n3t28b94tafji6op8tlqs1 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bah, Tijan L. & Batista, Catia & Gubert, Flore & McKenzie, David, 2023. "Can information and alternatives to irregular migration reduce “backway” migration from The Gambia?," Journal of Development Economics, Elsevier, vol. 165(C).
    2. Jeffrey D. Michler & Anna Josephson, 2022. "Recent developments in inference: practicalities for applied economics," Chapters, in: A Modern Guide to Food Economics, chapter 11, pages 235-268, Edward Elgar Publishing.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maximilian Kasy & Jann Spiess, 2022. "Optimal Pre-Analysis Plans: Statistical Decisions Subject to Implementability," Papers 2208.09638, arXiv.org, revised Jul 2024.
    2. Maximilian Kasy & Jann Spiess, 2022. "Rationalizing Pre-Analysis Plans:Statistical Decisions Subject to Implementability," Economics Series Working Papers 975, University of Oxford, Department of Economics.
    3. Aleksey Tetenov, 2016. "An economic theory of statistical testing," CeMMAP working papers CWP50/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Working Papers 2201, Tulane University, Department of Economics.
    5. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    6. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    7. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    8. Timothy B. Armstrong & Shu Shen, 2013. "Inference on Optimal Treatment Assignments," Cowles Foundation Discussion Papers 1927RR, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    9. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
    10. Steven F. Lehrer & R. Vincent Pohl & Kyungchul Song, 2022. "Multiple Testing and the Distributional Effects of Accountability Incentives in Education," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1552-1568, October.
    11. Takanori Ida & Takunori Ishihara & Koichiro Ito & Daido Kido & Toru Kitagawa & Shosei Sakaguchi & Shusaku Sasaki, 2022. "Choosing Who Chooses: Selection-Driven Targeting in Energy Rebate Programs," NBER Working Papers 30469, National Bureau of Economic Research, Inc.
    12. Yuya Sasaki & Takuya Ura, 2020. "Welfare Analysis via Marginal Treatment Effects," Papers 2012.07624, arXiv.org.
    13. Takanori Ida & Takunori Ishihara & Koichiro Ito & Daido Kido & Toru Kitagawa & Shosei Sakaguchi & Shusaku Sasaki, 2021. "Paternalism, Autonomy, or Both? Experimental Evidence from Energy Saving Programs," Papers 2112.09850, arXiv.org.
    14. Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
    16. Toru Kitagawa & Guanyi Wang, 2020. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP59/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Toru Kitagawa & Guanyi Wang, 2020. "Who Should Get Vaccinated? Individualized Allocation of Vaccines Over SIR Network," Papers 2012.04055, arXiv.org, revised Jul 2021.
    18. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Oct 2024.
    19. Alfredo Di Tillio & Marco Ottaviani & Peter Norman Sørensen, 2021. "Strategic Sample Selection," Econometrica, Econometric Society, vol. 89(2), pages 911-953, March.
    20. Toru Kitagawa & Guanyi Wang, 2023. "Individualized Treatment Allocation in Sequential Network Games," Papers 2302.05747, arXiv.org, revised Jul 2024.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2104.13367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.