IDEAS home Printed from https://ideas.repec.org/a/wly/hlthec/v33y2024i8p1772-1792.html
   My bibliography  Save this article

Integrating decision modeling and machine learning to inform treatment stratification

Author

Listed:
  • David Glynn
  • John Giardina
  • Julia Hatamyar
  • Ankur Pandya
  • Marta Soares
  • Noemi Kreif

Abstract

There is increasing interest in moving away from “one size fits all (OSFA)” approaches toward stratifying treatment decisions. Understanding how expected effectiveness and cost‐effectiveness varies with patient covariates is a key aspect of stratified decision making. Recently proposed machine learning (ML) methods can learn heterogeneity in outcomes without pre‐specifying subgroups or functional forms, enabling the construction of decision rules (‘policies’) that map individual covariates into a treatment decision. However, these methods do not yet integrate ML estimates into a decision modeling framework in order to reflect long‐term policy‐relevant outcomes and synthesize information from multiple sources. In this paper, we propose a method to integrate ML and decision modeling, when individual patient data is available to estimate treatment‐specific survival time. We also propose a novel implementation of policy tree algorithms to define subgroups using decision model output. We demonstrate these methods using the SPRINT (Systolic Blood Pressure Intervention Trial), comparing outcomes for “standard” and “intensive” blood pressure targets. We find that including ML into a decision model can impact the estimate of incremental net health benefit (INHB) for OSFA policies. We also find evidence that stratifying treatment using subgroups defined by a tree‐based algorithm can increase the estimates of the INHB.

Suggested Citation

  • David Glynn & John Giardina & Julia Hatamyar & Ankur Pandya & Marta Soares & Noemi Kreif, 2024. "Integrating decision modeling and machine learning to inform treatment stratification," Health Economics, John Wiley & Sons, Ltd., vol. 33(8), pages 1772-1792, August.
  • Handle: RePEc:wly:hlthec:v:33:y:2024:i:8:p:1772-1792
    DOI: 10.1002/hec.4834
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/hec.4834
    Download Restriction: no

    File URL: https://libkey.io/10.1002/hec.4834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laura Bojke & Marta O. Soares & Karl Claxton & Abigail Colson & Aimée Fox & Chris Jackson & Dina Jankovic & Alec Morton & Linda D. Sharples & Andrea Taylor, 2022. "Reference Case Methods for Expert Elicitation in Health Care Decision Making," Medical Decision Making, , vol. 42(2), pages 182-193, February.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    3. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    4. Anirban Basu, 2014. "ESTIMATING PERSON‐CENTERED TREATMENT (PeT) EFFECTS USING INSTRUMENTAL VARIABLES: AN APPLICATION TO EVALUATING PROSTATE CANCER TREATMENTS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(4), pages 671-691, June.
    5. Mark J. Sculpher & Karl Claxton & Mike Drummond & Chris McCabe, 2006. "Whither trial‐based economic evaluation for health care decision making?," Health Economics, John Wiley & Sons, Ltd., vol. 15(7), pages 677-687, July.
    6. Charles F. Manski, 2018. "Reasonable patient care under uncertainty," Health Economics, John Wiley & Sons, Ltd., vol. 27(10), pages 1397-1421, October.
    7. Toru Kitagawa & Aleksey Tetenov, 2021. "Equality-Minded Treatment Choice," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 561-574, March.
    8. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629, Decembrie.
    9. Douglas Coyle & Martin J. Buxton & Bernie J. O'Brien, 2003. "Stratified cost‐effectiveness analysis: a framework for establishing efficient limited use criteria," Health Economics, John Wiley & Sons, Ltd., vol. 12(5), pages 421-427, May.
    10. Keisuke Hirano & Jack R. Porter, 2009. "Asymptotics for Statistical Treatment Rules," Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
    11. Carl Bonander & Mikael Svensson, 2021. "Using causal forests to assess heterogeneity in cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 30(8), pages 1818-1832, August.
    12. Charles F. Manski, 2018. "Response to commentaries on “Reasonable patient care under uncertainty”," Health Economics, John Wiley & Sons, Ltd., vol. 27(10), pages 1431-1434, October.
    13. Christopher H. Jackson & Laura Bojke & Simon G. Thompson & Karl Claxton & Linda D. Sharples, 2011. "A Framework for Addressing Structural Uncertainty in Decision Models," Medical Decision Making, , vol. 31(4), pages 662-674, July.
    14. Koen Degeling & Hendrik Koffijberg & Mira D. Franken & Miriam Koopman & Maarten J. IJzerman, 2019. "Comparing Strategies for Modeling Competing Risks in Discrete-Event Simulations: A Simulation Study and Illustration in Colorectal Cancer," Medical Decision Making, , vol. 39(1), pages 57-73, January.
    15. Victor Chernozhukov & Mert Demirer & Esther Duflo & Iván Fernández-Val, 2018. "Generic Machine Learning Inference on Heterogeneous Treatment Effects in Randomized Experiments, with an Application to Immunization in India," NBER Working Papers 24678, National Bureau of Economic Research, Inc.
    16. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    17. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    18. Anirban Basu & David Meltzer, 2007. "Value of Information on Preference Heterogeneity and Individualized Care," Medical Decision Making, , vol. 27(2), pages 112-127, March.
    19. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    20. Mark Strong & Jeremy E. Oakley & Alan Brennan, 2014. "Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample," Medical Decision Making, , vol. 34(3), pages 311-326, April.
    21. Rita Faria & Manuel Gomes & David Epstein & Ian White, 2014. "A Guide to Handling Missing Data in Cost-Effectiveness Analysis Conducted Within Randomised Controlled Trials," PharmacoEconomics, Springer, vol. 32(12), pages 1157-1170, December.
    22. Reka E. Pataky & Stirling Bryan & Mohsen Sadatsafavi & Stuart Peacock & Dean A. Regier, 2022. "Tools for the Economic Evaluation of Precision Medicine: A Scoping Review of Frameworks for Valuing Heterogeneity-Informed Decisions," PharmacoEconomics, Springer, vol. 40(10), pages 931-941, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Papers 2201.07072, arXiv.org, revised Apr 2023.
    2. Carlos Fernández-Loría & Foster Provost & Jesse Anderton & Benjamin Carterette & Praveen Chandar, 2023. "A Comparison of Methods for Treatment Assignment with an Application to Playlist Generation," Information Systems Research, INFORMS, vol. 34(2), pages 786-803, June.
    3. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    4. Julia Hatamyar & Noemi Kreif, 2023. "Policy Learning with Rare Outcomes," Papers 2302.05260, arXiv.org, revised Oct 2023.
    5. Carl Bonander & Mikael Svensson, 2021. "Using causal forests to assess heterogeneity in cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 30(8), pages 1818-1832, August.
    6. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    7. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    8. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Apr 2024.
    9. Henrika Langen & Martin Huber, 2022. "How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign," Papers 2204.10820, arXiv.org, revised Jun 2022.
    10. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
    11. Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
    12. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    13. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Feb 2024.
    14. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    15. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    17. Alex Chin & Dean Eckles & Johan Ugander, 2022. "Evaluating Stochastic Seeding Strategies in Networks," Management Science, INFORMS, vol. 68(3), pages 1714-1736, March.
    18. Anders Bredahl Kock & David Preinerstorfer, 2024. "Regularizing Discrimination in Optimal Policy Learning with Distributional Targets," Papers 2401.17909, arXiv.org.
    19. Chunrong Ai & Yue Fang & Haitian Xie, 2024. "Data-driven Policy Learning for a Continuous Treatment," Papers 2402.02535, arXiv.org.
    20. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:hlthec:v:33:y:2024:i:8:p:1772-1792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/5749 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.