Optimal multi-action treatment allocation: A two-phase field experiment to boost immigrant naturalization
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2016.
"Inference in High-Dimensional Panel Models With an Application to Gun Control,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 590-605, October.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2014. "Inference in high dimensional panel models with an application to gun control," CeMMAP working papers 50/14, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2014. "Inference in High Dimensional Panel Models with an Application to Gun Control," Papers 1411.6507, arXiv.org.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2014. "Inference in high dimensional panel models with an application to gun control," CeMMAP working papers CWP50/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2018.
"Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice,"
Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP10/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2017. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP24/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Carlo Alberto Notebooks 402, Collegio Carlo Alberto.
- Christopher R. Knittel & Samuel Stolper, 2021. "Machine Learning about Treatment Effect Heterogeneity: The Case of Household Energy Use," AEA Papers and Proceedings, American Economic Association, vol. 111, pages 440-444, May.
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
- Amy Finkelstein & Matthew J Notowidigdo, 2019.
"Take-Up and Targeting: Experimental Evidence from SNAP,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(3), pages 1505-1556.
- Finkelstein, Amy & Notowidigdo, Matthew J., 2018. "Take-up and Targeting: Experimental Evidence from SNAP," IZA Discussion Papers 11558, Institute of Labor Economics (IZA).
- Amy Finkelstein & Matthew J. Notowidigdo, 2018. "Take-up and Targeting: Experimental Evidence from SNAP," NBER Working Papers 24652, National Bureau of Economic Research, Inc.
- Lechner, Michael & Smith, Jeffrey, 2007.
"What is the value added by caseworkers?,"
Labour Economics, Elsevier, vol. 14(2), pages 135-151, April.
- Lechner, Michael & Smith, Jeffrey A., 2003. "What is the Value Added by Caseworkers?," IZA Discussion Papers 728, Institute of Labor Economics (IZA).
- Lechner, Michael & Smith, Jeffrey, 2003. "What is the Value Added by Caseworkers?," CEPR Discussion Papers 3825, C.E.P.R. Discussion Papers.
- Michael Lechner & Jeffrey Smith, 2003. "What is the Value Added by Caseworkers?," University of St. Gallen Department of Economics working paper series 2003 2003-05, Department of Economics, University of St. Gallen.
- Michael Lechner & Jeffrey Smith, 2003. "What is the Value Added by Caseworkers?," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 20031, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
- Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021.
"Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence,"
The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," IZA Discussion Papers 12039, Institute of Labor Economics (IZA).
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Papers 1810.13237, arXiv.org, revised Dec 2018.
- Lechner, Michael & Knaus, Michael C. & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," CEPR Discussion Papers 13402, C.E.P.R. Discussion Papers.
- Knaus, Michael C. & Lechner, Michael & anthony.strittmatter@unisg.ch, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Economics Working Paper Series 1817, University of St. Gallen, School of Economics and Political Science.
- Saurabh Bhargava & Dayanand Manoli, 2015. "Psychological Frictions and the Incomplete Take-Up of Social Benefits: Evidence from an IRS Field Experiment," American Economic Review, American Economic Association, vol. 105(11), pages 3489-3529, November.
- Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
- Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021.
"Optimal Targeting in Fundraising: A Machine-Learning Approach,"
Economics working papers
2021-08, Department of Economics, Johannes Kepler University Linz, Austria.
- Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Machine-Learning Approach," CESifo Working Paper Series 9037, CESifo.
- Keisuke Hirano & Jack R. Porter, 2009.
"Asymptotics for Statistical Treatment Rules,"
Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
- Hirano, Keisuke & Porter, Jack, 2006. "Asymptotics for statistical treatment rules," MPRA Paper 1173, University Library of Munich, Germany.
- Goldin, Jacob & Homonoff, Tatiana & Javaid, Rizwan & Schafer, Brenda, 2022. "Tax filing and take-up: Experimental evidence on tax preparation outreach and benefit claiming," Journal of Public Economics, Elsevier, vol. 206(C).
- Frolich, Markus, 2008. "Statistical Treatment Choice: An Application to Active Labor Market Programs," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 547-558, June.
- Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
- Hainmueller, Jens & Hangartner, Dominik, 2013. "Who Gets a Swiss Passport? A Natural Experiment in Immigrant Discrimination," American Political Science Review, Cambridge University Press, vol. 107(1), pages 159-187, February.
- Christina Gathmann & Nicolas Keller, 2018. "Access to Citizenship and the Economic Assimilation of Immigrants," Economic Journal, Royal Economic Society, vol. 128(616), pages 3141-3181, December.
- Charles F. Manski, 2004.
"Statistical Treatment Rules for Heterogeneous Populations,"
Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
- Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers CWP03/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers 03/03, Institute for Fiscal Studies.
- Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Causal Machine-Learning Approach," Papers 2103.10251, arXiv.org, revised Sep 2021.
- Manski, Charles F., 2007. "Minimax-regret treatment choice with missing outcome data," Journal of Econometrics, Elsevier, vol. 139(1), pages 105-115, July.
- Felfe, Christina & Kocher, Martin G. & Rainer, Helmut & Saurer, Judith & Siedler, Thomas, 2021.
"More opportunity, more cooperation? The behavioral effects of birthright citizenship on immigrant youth,"
Journal of Public Economics, Elsevier, vol. 200(C).
- Christina Felfe & Martin G. Kocher & Helmut Rainer & Judith Saurer & Thomas Siedler, 2018. "More Opportunity, More Cooperation? The Behavioral Effects of Birthright Citizenship on Immigrant Youth," CESifo Working Paper Series 6991, CESifo.
- Christina Felfe & Martin G. Kocher & Helmut Rainer & Judith Saurer & Thomas Siedler, 2021. "More Opportunity, More Cooperation? The Behavioral Effects of Birthright Citizenship on Immigrant Youth," CEPA Discussion Papers 32, Center for Economic Policy Analysis.
- Felfe, Christina & Kocher, Martin & Rainer, Helmut & Saurer, Judith & Siedler, Thomas, 2018. "More Opportunity, More Cooperation? The Behavioral Effects of Birthright Citizenship on Immigrant Youth," Economics Series 340, Institute for Advanced Studies.
- Felfe, Christina & Kocher, Martin G. & Rainer, Helmut & Saurer, Judith & Siedler, Thomas, 2021. "More Opportunity, More Cooperation? The Behavioral Effects of Birthright Citizenship on Immigrant Youth," IZA Discussion Papers 14384, Institute of Labor Economics (IZA).
- Jonathan M.V. Davis & Sara B. Heller, 2017. "Using Causal Forests to Predict Treatment Heterogeneity: An Application to Summer Jobs," American Economic Review, American Economic Association, vol. 107(5), pages 546-550, May.
- Bhattacharya, Debopam & Dupas, Pascaline, 2012.
"Inferring welfare maximizing treatment assignment under budget constraints,"
Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
- Debopam Bhattacharya & Pascaline Dupas, 2008. "Inferring Welfare Maximizing Treatment Assignment under Budget Constraints," NBER Working Papers 14447, National Bureau of Economic Research, Inc.
- Dancygier,Rafaela M., 2010. "Immigration and Conflict in Europe," Cambridge Books, Cambridge University Press, number 9780521150231, September.
- Dancygier,Rafaela M., 2010. "Immigration and Conflict in Europe," Cambridge Books, Cambridge University Press, number 9780521199070, September.
- Hainmueller, Jens & Hangartner, Dominik & Ward, Dalston, 2019. "The Effect of Citizenship on the Long-Term Earnings of Marginalized Immigrants: Quasi-Experimental Evidence from Switzerland," SocArXiv 24qas, Center for Open Science.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
- Keller, Nicolas & Gathmann, Christina & Monscheuer, Ole, 2015. "Citizenship and the Social Integration of Immigrants: Evidence from Germany's Immigration Reforms," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113184, Verein für Socialpolitik / German Economic Association.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Michael C Knaus, 2022.
"Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Knaus, Michael C., 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Economics Working Paper Series 2004, University of St. Gallen, School of Economics and Political Science.
- Knaus, Michael C., 2020. "Double Machine Learning Based Program Evaluation under Unconfoundedness," IZA Discussion Papers 13051, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
- Takanori Ida & Takunori Ishihara & Koichiro Ito & Daido Kido & Toru Kitagawa & Shosei Sakaguchi & Shusaku Sasaki, 2022.
"Choosing Who Chooses: Selection-Driven Targeting in Energy Rebate Programs,"
NBER Working Papers
30469, National Bureau of Economic Research, Inc.
- IDA Takanori & ISHIHARA Takunori & ITO Koichiro & KIDO Daido & KITAGAWA Toru & SAKAGUCHI Shosei & SASAKI Shusaku, 2023. "Choosing Who Chooses: Selection-driven targeting in energy rebate programs," Discussion papers 23011, Research Institute of Economy, Trade and Industry (RIETI).
- Takanori Ida & Takunori Ishihara & Koichiro Ito & Daido Kido & Toru Kitagawa & Shosei Sakaguchi & Shusaku Sasaki, 2021. "Paternalism, Autonomy, or Both? Experimental Evidence from Energy Saving Programs," Papers 2112.09850, arXiv.org.
- Huber, Martin, 2019.
"An introduction to flexible methods for policy evaluation,"
FSES Working Papers
504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
- Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
- Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023.
"Towards data-driven project design: Providing optimal treatment rules for development projects,"
Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
- Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2021. "Towards Data-driven Project design: Providing Optimal Treatment Rules for Development Projects," 2021 Annual Meeting, August 1-3, Austin, Texas 314016, Agricultural and Applied Economics Association.
- Susan Athey & Stefan Wager, 2021.
"Policy Learning With Observational Data,"
Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
- Liyang Sun, 2021.
"Empirical Welfare Maximization with Constraints,"
Papers
2103.15298, arXiv.org, revised Sep 2024.
- Liyang Sun, 2024. "Empirical welfare maximization with constraints," CeMMAP working papers 19/24, Institute for Fiscal Studies.
- Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
- Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Oct 2024.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Manski, Charles F., 2023.
"Probabilistic prediction for binary treatment choice: With focus on personalized medicine,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
- Charles F. Manski, 2021. "Probabilistic Prediction for Binary Treatment Choice: with Focus on Personalized Medicine," NBER Working Papers 29358, National Bureau of Economic Research, Inc.
- Charles F. Manski, 2021. "Probabilistic Prediction for Binary Treatment Choice: with focus on personalized medicine," Papers 2110.00864, arXiv.org.
- Eric Mbakop & Max Tabord‐Meehan, 2021.
"Model Selection for Treatment Choice: Penalized Welfare Maximization,"
Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
- Eric Mbakop & Max Tabord-Meehan, 2016. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Papers 1609.03167, arXiv.org, revised Dec 2020.
- Anders Bredahl Kock & Martin Thyrsgaard, 2017. "Optimal sequential treatment allocation," Papers 1705.09952, arXiv.org, revised Aug 2018.
- Firpo, Sergio & Galvao, Antonio F. & Kobus, Martyna & Parker, Thomas & Rosa-Dias, Pedro, 2020.
"Loss Aversion and the Welfare Ranking of Policy Interventions,"
IZA Discussion Papers
13176, Institute of Labor Economics (IZA).
- Sergio Firpo & Antonio F. Galvao & Martyna Kobus & Thomas Parker & Pedro Rosa-Dias, 2020. "Loss aversion and the welfare ranking of policy interventions," Papers 2004.08468, arXiv.org, revised Sep 2023.
- Bhattacharya, Debopam & Dupas, Pascaline, 2012.
"Inferring welfare maximizing treatment assignment under budget constraints,"
Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
- Debopam Bhattacharya & Pascaline Dupas, 2008. "Inferring Welfare Maximizing Treatment Assignment under Budget Constraints," NBER Working Papers 14447, National Bureau of Economic Research, Inc.
- Undral Byambadalai, 2022. "Identification and Inference for Welfare Gains without Unconfoundedness," Papers 2207.04314, arXiv.org.
- Yuchen Hu & Henry Zhu & Emma Brunskill & Stefan Wager, 2024. "Minimax-Regret Sample Selection in Randomized Experiments," Papers 2403.01386, arXiv.org, revised Jun 2024.
- Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023.
"Treatment recommendation with distributional targets,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020. "Treatment recommendation with distributional targets," Papers 2005.09717, arXiv.org, revised Apr 2022.
- Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-EXP-2023-06-12 (Experimental Economics)
- NEP-MIG-2023-06-12 (Economics of Human Migration)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.00545. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.