My bibliography
Save this item
Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
- Yitong Guo & Jie Mei & Zhiting Pan & Haonan Liu & Weiwei Li, 2022. "Adaptively Promoting Diversity in a Novel Ensemble Method for Imbalanced Credit-Risk Evaluation," Mathematics, MDPI, vol. 10(11), pages 1-21, May.
- Büşra Alma Çallı & Erman Coşkun, 2021. "A Longitudinal Systematic Review of Credit Risk Assessment and Credit Default Predictors," SAGE Open, , vol. 11(4), pages 21582440211, November.
- Eccles, Peter & Grout, Paul & Siciliani, Paolo & Zalewska, Anna, 2021. "The impact of machine learning and big data on credit markets," Bank of England working papers 930, Bank of England.
- Kaposty, Florian & Kriebel, Johannes & Löderbusch, Matthias, 2020. "Predicting loss given default in leasing: A closer look at models and variable selection," International Journal of Forecasting, Elsevier, vol. 36(2), pages 248-266.
- Li, Yibei & Wang, Ximei & Djehiche, Boualem & Hu, Xiaoming, 2020.
"Credit scoring by incorporating dynamic networked information,"
European Journal of Operational Research, Elsevier, vol. 286(3), pages 1103-1112.
- Yibei Li & Ximei Wang & Boualem Djehiche & Xiaoming Hu, 2019. "Credit Scoring by Incorporating Dynamic Networked Information," Papers 1905.11795, arXiv.org, revised Oct 2019.
- Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
- Anna Stelzer, 2019. "Predicting credit default probabilities using machine learning techniques in the face of unequal class distributions," Papers 1907.12996, arXiv.org.
- Emmanuel Flachaire & Gilles Hacheme & Sullivan Hu'e & S'ebastien Laurent, 2022. "GAM(L)A: An econometric model for interpretable Machine Learning," Papers 2203.11691, arXiv.org.
- Christophe Hurlin & Christophe Perignon & Sébastien Saurin, 2021.
"The Fairness of Credit Scoring Models,"
Working Papers
hal-03501452, HAL.
- Christophe Hurlin & Christophe P'erignon & S'ebastien Saurin, 2022. "The Fairness of Credit Scoring Models," Papers 2205.10200, arXiv.org, revised Feb 2024.
- Hurlin, Christophe & Pérignon, Christophe & Saurin, Sébastien, 2021. "The Fairness of Credit Scoring Models," HEC Research Papers Series 1411, HEC Paris.
- Christophe HURLIN & Christophe PERIGNON & Sébastien SAURIN, 2021. "The Fairness of Credit Scoring Models," LEO Working Papers / DR LEO 2912, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Nikita Kozodoi & Johannes Jacob & Stefan Lessmann, 2021. "Fairness in Credit Scoring: Assessment, Implementation and Profit Implications," Papers 2103.01907, arXiv.org, revised Jun 2022.
- Paolo Gambetti & Francesco Roccazzella & Frédéric Vrins, 2022.
"Meta-Learning Approaches for Recovery Rate Prediction,"
Risks, MDPI, vol. 10(6), pages 1-29, June.
- Gambetti, Paolo & Roccazzella, Francesco & Vrins, Frédéric, 2020. "Meta-learning approaches for recovery rate prediction," LIDAM Discussion Papers LFIN 2020007, Université catholique de Louvain, Louvain Finance (LFIN).
- Gambetti, Paolo & Roccazzella, Francesco & Vrins, Frédéric, 2022. "Meta-Learning Approaches for Recovery Rate Prediction," LIDAM Reprints LFIN 2022011, Université catholique de Louvain, Louvain Finance (LFIN).
- Davidescu Adriana AnaMaria & Agafiței Marina-Diana & Strat Vasile Alecsandru & Dima Alina Mihaela, 2024. "Mapping the Landscape: A Bibliometric Analysis of Rating Agencies in the Era of Artificial Intelligence and Machine Learning," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 67-85.
- Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019.
"Computational approaches and data analytics in financial services: A literature review,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
- Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02879937, HAL.
- Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02880149, HAL.
- Stefania Albanesi & Domonkos F. Vamossy, 2019.
"Predicting Consumer Default: A Deep Learning Approach,"
Papers
1908.11498, arXiv.org, revised Oct 2019.
- Stefania Albanesi & Domonkos F. Vamossy, 2019. "Predicting Consumer Default: A Deep Learning Approach," NBER Working Papers 26165, National Bureau of Economic Research, Inc.
- Stefania Albanesi & Domonkos F. Vamossy, 2019. "Predicting Consumer Default: A Deep Learning Approach," Working Papers 2019-056, Human Capital and Economic Opportunity Working Group.
- Albanesi, Stefania & Vamossy, Domonkos, 2019. "Predicting Consumer Default: A Deep Learning Approach," CEPR Discussion Papers 13914, C.E.P.R. Discussion Papers.
- Zha, Yong & Wang, Yuting & Li, Quan & Yao, Wenying, 2022. "Credit offering strategy and dynamic pricing in the presence of consumer strategic behavior," European Journal of Operational Research, Elsevier, vol. 303(2), pages 753-766.
- Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
- Chi Ming Chen & Geoffrey Kwok Fai Tso & Kaijian He, 2024. "Quantum Optimized Cost Based Feature Selection and Credit Scoring for Mobile Micro-financing," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 919-950, February.
- Babaei, Golnoosh & Giudici, Paolo & Raffinetti, Emanuela, 2023. "Explainable FinTech lending," Journal of Economics and Business, Elsevier, vol. 125.
- Nadia Ayed & Khemaies Bougatef, 2024. "Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1803-1835, September.
- Nicola Branzoli & Ilaria Supino, 2020. "FinTech credit: a critical review of empirical research," Questioni di Economia e Finanza (Occasional Papers) 549, Bank of Italy, Economic Research and International Relations Area.
- Liu, Yi & Yang, Menglong & Wang, Yudong & Li, Yongshan & Xiong, Tiancheng & Li, Anzhe, 2022. "Applying machine learning algorithms to predict default probability in the online credit market: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 79(C).
- Gero Szepannek, 2022. "An Overview on the Landscape of R Packages for Open Source Scorecard Modelling," Risks, MDPI, vol. 10(3), pages 1-33, March.
- Zhao Wang & Cuiqing Jiang & Huimin Zhao, 2022. "Know Where to Invest: Platform Risk Evaluation in Online Lending," Information Systems Research, INFORMS, vol. 33(3), pages 765-783, September.
- Teply, Petr & Polena, Michal, 2020. "Best classification algorithms in peer-to-peer lending," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
- Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
- Debaere, Steven & Coussement, Kristof & De Ruyck, Tom, 2018. "Multi-label classification of member participation in online innovation communities," European Journal of Operational Research, Elsevier, vol. 270(2), pages 761-774.
- He, Ni & Yongqiao, Wang & Tao, Jiang & Zhaoyu, Chen, 2022. "Self-Adaptive bagging approach to credit rating," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
- Doris Fejza & Dritan Nace & Orjada Kulla, 2022. "The Credit Risk Problem—A Developing Country Case Study," Risks, MDPI, vol. 10(8), pages 1-11, July.
- Kim, Phillip H. & Kotha, Reddi & Fourné, Sebastian P.L. & Coussement, Kristof, 2019. "Taking leaps of faith: Evaluation criteria and resource commitments for early-stage inventions," Research Policy, Elsevier, vol. 48(6), pages 1429-1444.
- Davide Nicola Continanza & Andrea del Monaco & Marco di Lucido & Daniele Figoli & Pasquale Maddaloni & Filippo Quarta & Giuseppe Turturiello, 2023.
"Stacking machine learning models for anomaly detection: comparing AnaCredit to other banking data sets,"
IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59,
Bank for International Settlements.
- Pasquale Maddaloni & Davide Nicola Continanza & Andrea del Monaco & Daniele Figoli & Marco di Lucido & Filippo Quarta & Giuseppe Turturiello, 2022. "Stacking machine-learning models for anomaly detection: comparing AnaCredit to other banking datasets," Questioni di Economia e Finanza (Occasional Papers) 689, Bank of Italy, Economic Research and International Relations Area.
- Robin Gubela & Artem Bequé & Stefan Lessmann & Fabian Gebert, 2019. "Conversion Uplift in E-Commerce: A Systematic Benchmark of Modeling Strategies," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 747-791, May.
- Monir El Annas & Badreddine Benyacoub & Mohamed Ouzineb, 2023. "Semi-supervised adapted HMMs for P2P credit scoring systems with reject inference," Computational Statistics, Springer, vol. 38(1), pages 149-169, March.
- Branzoli, Nicola & Rainone, Edoardo & Supino, Ilaria, 2024.
"The role of banks’ technology adoption in credit markets during the pandemic,"
Journal of Financial Stability, Elsevier, vol. 71(C).
- Nicola Branzoli & Edoardo Rainone & Ilaria Supino, 2023. "The role of banks' technology adoption in credit markets during the pandemic," Temi di discussione (Economic working papers) 1406, Bank of Italy, Economic Research and International Relations Area.
- Luisa Roa & Andr'es Rodr'iguez-Rey & Alejandro Correa-Bahnsen & Carlos Valencia, 2021. "Supporting Financial Inclusion with Graph Machine Learning and Super-App Alternative Data," Papers 2102.09974, arXiv.org.
- Huei-Wen Teng & Michael Lee, 2019. "Estimation Procedures of Using Five Alternative Machine Learning Methods for Predicting Credit Card Default," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-27, September.
- Markellos, Raphael N. & Psychoyios, Dimitris & Schneider, Friedrich, 2016. "Sovereign debt markets in light of the shadow economy," European Journal of Operational Research, Elsevier, vol. 252(1), pages 220-231.
- Aggarwal, Nidhi & Singh, Manish K. & Thomas, Susan, 2023.
"Do decreases in Distance-to-Default predict rating downgrades?,"
Economic Modelling, Elsevier, vol. 129(C).
- Nidhi Aggarwal & Manish K. Singh & Susan Thomas, 2022. "Do decreases in Distance-to-Default predict rating downgrades?," Working Papers 14, xKDR.
- Jiang, Cuiqing & Yin, Chang & Tang, Qian & Wang, Zhao, 2023. "The value of official website information in the credit risk evaluation of SMEs," Journal of Business Research, Elsevier, vol. 169(C).
- Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022.
"Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects,"
European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
- Elena Ivona Dumitrescu & Sullivan Hué & Christophe Hurlin & Sessi Tokpavi, 2022. "Machine Learning for Credit Scoring: Improving Logistic Regression with Non Linear Decision Tree Effects," Post-Print hal-03331114, HAL.
- Yiheng Li & Weidong Chen, 2020. "A Comparative Performance Assessment of Ensemble Learning for Credit Scoring," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
- Kaveh Bastani & Elham Asgari & Hamed Namavari, 2018. "Wide and Deep Learning for Peer-to-Peer Lending," Papers 1810.03466, arXiv.org, revised Oct 2018.
- Jianbin Lin & Zhiqiang Zhang & Jun Zhou & Xiaolong Li & Jingli Fang & Yanming Fang & Quan Yu & Yuan Qi, 2020. "NetDP: An Industrial-Scale Distributed Network Representation Framework for Default Prediction in Ant Credit Pay," Papers 2004.00201, arXiv.org.
- Liu, Wanan & Fan, Hong & Xia, Meng, 2023. "Tree-based heterogeneous cascade ensemble model for credit scoring," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1593-1614.
- Cuiqing Jiang & Zhao Wang & Ruiya Wang & Yong Ding, 2018. "Loan default prediction by combining soft information extracted from descriptive text in online peer-to-peer lending," Annals of Operations Research, Springer, vol. 266(1), pages 511-529, July.
- Xia, Yufei & Zhao, Junhao & He, Lingyun & Li, Yinguo & Yang, Xiaoli, 2021. "Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1590-1613.
- Przemys{l}aw Biecek & Marcin Chlebus & Janusz Gajda & Alicja Gosiewska & Anna Kozak & Dominik Ogonowski & Jakub Sztachelski & Piotr Wojewnik, 2021. "Enabling Machine Learning Algorithms for Credit Scoring -- Explainable Artificial Intelligence (XAI) methods for clear understanding complex predictive models," Papers 2104.06735, arXiv.org.
- Bart H. L. Overes & Michel Wel, 2023. "Modelling Sovereign Credit Ratings: Evaluating the Accuracy and Driving Factors using Machine Learning Techniques," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 1273-1303, March.
- Chengbin Wang & Kuangnan Fang & Chenlu Zheng & Hechao Xu & Zewei Li, 2021. "Credit scoring of micro and small entrepreneurial firms in China," International Entrepreneurship and Management Journal, Springer, vol. 17(1), pages 29-43, March.
- Lismont, Jasmien & Vanthienen, Jan & Baesens, Bart & Lemahieu, Wilfried, 2017. "Defining analytics maturity indicators: A survey approach," International Journal of Information Management, Elsevier, vol. 37(3), pages 114-124.
- Marcus Buckmann & Andy Haldane & Anne-Caroline Hüser, 2021.
"Comparing minds and machines: implications for financial stability,"
Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(3), pages 479-508.
- Buckmann, Marcus & Haldane, Andy & Hüser, Anne-Caroline, 2021. "Comparing minds and machines: implications for financial stability," Bank of England working papers 937, Bank of England.
- Gubela, Robin & Bequé, Artem & Gebert, Fabian & Lessmann, Stefan, 2018. "Conversion uplift in e-commerce: A systematic benchmark of modeling strategies," IRTG 1792 Discussion Papers 2018-062, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
- Chen, Shunqin & Guo, Zhengfeng & Zhao, Xinlei, 2021. "Predicting mortgage early delinquency with machine learning methods," European Journal of Operational Research, Elsevier, vol. 290(1), pages 358-372.
- Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
- Tigges, Maximilian & Mestwerdt, Sönke & Tschirner, Sebastian & Mauer, René, 2024. "Who gets the money? A qualitative analysis of fintech lending and credit scoring through the adoption of AI and alternative data," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
- Douw Gerbrand Breed & Jacques Hurter & Mercy Marimo & Matheba Raletjene & Helgard Raubenheimer & Vibhu Tomar & Tanja Verster, 2023. "A Forward-Looking IFRS 9 Methodology, Focussing on the Incorporation of Macroeconomic and Macroprudential Information into Expected Credit Loss Calculation," Risks, MDPI, vol. 11(3), pages 1-16, March.
- Lemus, Antonio & Pulgar, Carlos, 2021. "Households’ Debt Thresholds: A Market Aspects Approach," MPRA Paper 106958, University Library of Munich, Germany.
- Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
- Andrey Filchenkov & Natalia Khanzhina & Arina Tsai & Ivan Smetannikov, 2021. "Regularization of Autoencoders for Bank Client Profiling Based on Financial Transactions," Risks, MDPI, vol. 9(3), pages 1-16, March.
- Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020.
"Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds,"
LEO Working Papers / DR LEO
2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Elena Dumitrescu & Sullivan Hué & Christophe Hurlin & Sessi Tokpavi, 2021. "Machine Learning or Econometrics for Credit Scoring: Let's Get the Best of Both Worlds," Working Papers hal-02507499, HAL.
- Carlos Serrano-Cinca & Begoña Gutiérrez-Nieto & Luz López-Palacios, 2015. "Determinants of Default in P2P Lending," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
- Manthoulis, Georgios & Doumpos, Michalis & Zopounidis, Constantin & Galariotis, Emilios, 2020. "An ordinal classification framework for bank failure prediction: Methodology and empirical evidence for US banks," European Journal of Operational Research, Elsevier, vol. 282(2), pages 786-801.
- Lisa Crosato & Caterina Liberati & Marco Repetto, 2021. "Look Who's Talking: Interpretable Machine Learning for Assessing Italian SMEs Credit Default," Papers 2108.13914, arXiv.org, revised Sep 2021.
- Rasa Kanapickiene & Renatas Spicas, 2019. "Credit Risk Assessment Model for Small and Micro-Enterprises: The Case of Lithuania," Risks, MDPI, vol. 7(2), pages 1-23, June.
- Golbayani, Parisa & Florescu, Ionuţ & Chatterjee, Rupak, 2020. "A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
- Zhang, Hao & Shi, Yuxin & Yang, Xueran & Zhou, Ruiling, 2021. "A firefly algorithm modified support vector machine for the credit risk assessment of supply chain finance," Research in International Business and Finance, Elsevier, vol. 58(C).
- Sullivan Hué, 2022. "GAM(L)A: An econometric model for interpretable machine learning," French Stata Users' Group Meetings 2022 19, Stata Users Group.
- Lessmann, Stefan & Coussement, Kristof & De Bock, Koen W. & Haupt, Johannes, 2018. "Targeting customers for profit: An ensemble learning framework to support marketing decision making," IRTG 1792 Discussion Papers 2018-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Gubela, Robin M. & Lessmann, Stefan & Jaroszewicz, Szymon, 2020. "Response transformation and profit decomposition for revenue uplift modeling," European Journal of Operational Research, Elsevier, vol. 283(2), pages 647-661.
- Tine Van Calster & Filip Van den Bossche & Bart Baesens & Wilfried Lemahieu, 2020. "Profit-oriented sales forecasting: a comparison of forecasting techniques from a business perspective," Papers 2002.00949, arXiv.org.
- Zhou, Jing & Li, Wei & Wang, Jiaxin & Ding, Shuai & Xia, Chengyi, 2019. "Default prediction in P2P lending from high-dimensional data based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
- Charles B. Perkins & J. Christina Wang, 2019. "How Magic a Bullet Is Machine Learning for Credit Analysis? An Exploration with FinTech Lending Data," Working Papers 19-16, Federal Reserve Bank of Boston.
- Noureddine Boustani & Ali Emrouznejad & Roya Gholami & Ozren Despic & Athina Ioannou, 2024. "Improving the predictive accuracy of the cross-selling of consumer loans using deep learning networks," Annals of Operations Research, Springer, vol. 339(1), pages 613-630, August.
- Maria Ludovica Drudi & Stefano Nobili, 2021. "A liquidity risk early warning indicator for Italian banks: a machine learning approach," Temi di discussione (Economic working papers) 1337, Bank of Italy, Economic Research and International Relations Area.
- Abisola Akinjole & Olamilekan Shobayo & Jumoke Popoola & Obinna Okoyeigbo & Bayode Ogunleye, 2024. "Ensemble-Based Machine Learning Algorithm for Loan Default Risk Prediction," Mathematics, MDPI, vol. 12(21), pages 1-32, October.
- Tomasz Pisula, 2020. "An Ensemble Classifier-Based Scoring Model for Predicting Bankruptcy of Polish Companies in the Podkarpackie Voivodeship," JRFM, MDPI, vol. 13(2), pages 1-35, February.
- Baidoo, Edwin & Natarajan, Ramachandran, 2021. "Profit-based credit models with lender’s attitude towards risk and loss," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
- Hu'e Sullivan & Hurlin Christophe & P'erignon Christophe & Saurin S'ebastien, 2022. "Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring," Papers 2212.05866, arXiv.org, revised Jun 2023.
- Sahab Zandi & Kamesh Korangi & Mar'ia 'Oskarsd'ottir & Christophe Mues & Cristi'an Bravo, 2024. "Attention-based Dynamic Multilayer Graph Neural Networks for Loan Default Prediction," Papers 2402.00299, arXiv.org, revised Jun 2024.
- De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
- repec:agr:journl:v:4(621):y:2019:i:4(621):p:75-84 is not listed on IDEAS
- Alfonso-Sánchez, Sherly & Solano, Jesús & Correa-Bahnsen, Alejandro & Sendova, Kristina P. & Bravo, Cristián, 2024. "Optimizing credit limit adjustments under adversarial goals using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 315(2), pages 802-817.
- Juan Laborda & Seyong Ryoo, 2021. "Feature Selection in a Credit Scoring Model," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
- Topuz, Kazim & Urban, Timothy L. & Yildirim, Mehmet B., 2024. "A Markovian score model for evaluating provider performance for continuity of care—An explainable analytics approach," European Journal of Operational Research, Elsevier, vol. 317(2), pages 341-351.
- Katsikopoulos, Konstantinos V. & Egozcue, Martin & Garcia, Luis Fuentes, 2022. "A simple model for mixing intuition and analysis," European Journal of Operational Research, Elsevier, vol. 303(2), pages 779-789.
- Son Tran & Peter Verhoeven, 2021. "Kelly Criterion for Optimal Credit Allocation," JRFM, MDPI, vol. 14(9), pages 1-16, September.
- Jiang, Cuiqing & Wang, Zhao & Zhao, Huimin, 2019. "A prediction-driven mixture cure model and its application in credit scoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 20-31.
- De Bock, Koen W. & Coussement, Kristof & Lessmann, Stefan, 2020. "Cost-sensitive business failure prediction when misclassification costs are uncertain: A heterogeneous ensemble selection approach," European Journal of Operational Research, Elsevier, vol. 285(2), pages 612-630.
- Yang, Yi & Guo, Yuxuan & Chang, Xiangyu, 2021. "Angle-based cost-sensitive multicategory classification," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
- Margherita Doria & Elisa Luciano & Patrizia Semeraro, 2022. "Machine learning techniques in joint default assessment," Papers 2205.01524, arXiv.org, revised Sep 2023.
- Martin Leo & Suneel Sharma & K. Maddulety, 2019. "Machine Learning in Banking Risk Management: A Literature Review," Risks, MDPI, vol. 7(1), pages 1-22, March.
- Shiqi Fang & Zexun Chen & Jake Ansell, 2024. "Peer-induced Fairness: A Causal Approach for Algorithmic Fairness Auditing," Papers 2408.02558, arXiv.org, revised Sep 2024.
- Zedda, Stefano, 2024. "Credit scoring: Does XGboost outperform logistic regression?A test on Italian SMEs," Research in International Business and Finance, Elsevier, vol. 70(PB).
- Oguz Koc & Omur Ugur & A. Sevtap Kestel, 2023. "The Impact of Feature Selection and Transformation on Machine Learning Methods in Determining the Credit Scoring," Papers 2303.05427, arXiv.org.
- Cao Son Tran & Dan Nicolau & Richi Nayak & Peter Verhoeven, 2021. "Modeling Credit Risk: A Category Theory Perspective," JRFM, MDPI, vol. 14(7), pages 1-21, July.
- Chen, Liao & Ma, Shoufeng & Li, Changlin & Yang, Yuance & Wei, Wei & Cui, Runbang, 2024. "A spatial–temporal graph-based AI model for truck loan default prediction using large-scale GPS trajectory data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
- Yusuf Priyo Anggodo & Abba Suganda Girsang, 2024. "A Novel Modified Binning and Logistics Regression to Handle Shifting in Credit Scoring," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2371-2403, June.
- Selçuk BAYRACI & Orkun SUSUZ, 2019. "A Deep Neural Network (DNN) based classification model in application to loan default prediction," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(4(621), W), pages 75-84, Winter.
- Sigrist, Fabio & Hirnschall, Christoph, 2019. "Grabit: Gradient tree-boosted Tobit models for default prediction," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 177-192.
- Durand, Pierre & Le Quang, Gaëtan, 2022. "Banks to basics! Why banking regulation should focus on equity," European Journal of Operational Research, Elsevier, vol. 301(1), pages 349-372.
- Nenad Milojević & Srdjan Redzepagic, 2021. "Prospects of Artificial Intelligence and Machine Learning Application in Banking Risk Management," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 10(3), pages 41-57.
- Fitzpatrick, Trevor & Mues, Christophe, 2021. "How can lenders prosper? Comparing machine learning approaches to identify profitable peer-to-peer loan investments," European Journal of Operational Research, Elsevier, vol. 294(2), pages 711-722.
- Shi, Yong & Qu, Yi & Chen, Zhensong & Mi, Yunlong & Wang, Yunong, 2024. "Improved credit risk prediction based on an integrated graph representation learning approach with graph transformation," European Journal of Operational Research, Elsevier, vol. 315(2), pages 786-801.
- Achakzai, Muhammad Atif Khan & Peng, Juan, 2023. "Detecting financial statement fraud using dynamic ensemble machine learning," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
- Haupt, Johannes & Bender, Benedict & Fabian, Benjamin & Lessmann, Stefan, 2018. "Robust identification of email tracking: A machine learning approach," European Journal of Operational Research, Elsevier, vol. 271(1), pages 341-356.
- Daniel J. Egger & Claudio Gambella & Jakub Marecek & Scott McFaddin & Martin Mevissen & Rudy Raymond & Andrea Simonetto & Stefan Woerner & Elena Yndurain, 2020. "Quantum Computing for Finance: State of the Art and Future Prospects," Papers 2006.14510, arXiv.org, revised Jan 2021.
- Paritosh Navinchandra Jha & Marco Cucculelli, 2021. "A New Model Averaging Approach in Predicting Credit Risk Default," Risks, MDPI, vol. 9(6), pages 1-15, June.
- Ivan Tikshaev & Roman Kulshin & Gennadii Volokitin & Pavel Senchenko & Anatoly Sidorov, 2022. "The Possibilities of Using Scoring to Determine the Relevance of Software Development Tenders," Mathematics, MDPI, vol. 10(24), pages 1-13, December.
- Bhattacharya, Arnab & Wilson, Simon P. & Soyer, Refik, 2019. "A Bayesian approach to modeling mortgage default and prepayment," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1112-1124.
- Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Sun, Yue & Chai, Nana & Dong, Yizhe & Shi, Baofeng, 2022. "Assessing and predicting small industrial enterprises’ credit ratings: A fuzzy decision-making approach," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1158-1172.
- Koen W. de Bock & Kristof Coussement & Stefan Lessmann, 2020. "Cost-sensitive business failure prediction when misclassification costs are uncertain: A heterogeneous ensemble selection approach," Post-Print hal-02863245, HAL.
- Li, Zhe & Liang, Shuguang & Pan, Xianyou & Pang, Meng, 2024. "Credit risk prediction based on loan profit: Evidence from Chinese SMEs," Research in International Business and Finance, Elsevier, vol. 67(PA).
- Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
- Samami, Maryam & Akbari, Ebrahim & Abdar, Moloud & Plawiak, Pawel & Nematzadeh, Hossein & Basiri, Mohammad Ehsan & Makarenkov, Vladimir, 2020. "A mixed solution-based high agreement filtering method for class noise detection in binary classification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
- Zanin, Luca, 2020. "Combining multiple probability predictions in the presence of class imbalance to discriminate between potential bad and good borrowers in the peer-to-peer lending market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 25(C).
- Anna Matuszyk, 2023. "Comparison of different approaches using Random Forest for imbalanced credit data," Bank i Kredyt, Narodowy Bank Polski, vol. 54(4), pages 419-436.
- Kozodoi, Nikita & Jacob, Johannes & Lessmann, Stefan, 2022. "Fairness in credit scoring: Assessment, implementation and profit implications," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1083-1094.
- Shoghi , Amirhossein, 2019. "Debt Collection Industry: Machine Learning Approach," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 14(4), pages 453-473, October.
- Parisa Golbayani & Ionuc{t} Florescu & Rupak Chatterjee, 2020. "A comparative study of forecasting Corporate Credit Ratings using Neural Networks, Support Vector Machines, and Decision Trees," Papers 2007.06617, arXiv.org.
- Lessmann, Stefan & Voß, Stefan, 2017. "Car resale price forecasting: The impact of regression method, private information, and heterogeneity on forecast accuracy," International Journal of Forecasting, Elsevier, vol. 33(4), pages 864-877.
- Zhou, Ying & Shen, Long & Ballester, Laura, 2023. "A two-stage credit scoring model based on random forest: Evidence from Chinese small firms," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Chengbin Wang & Kuangnan Fang & Chenlu Zheng & Hechao Xu & Zewei Li, 0. "Credit scoring of micro and small entrepreneurial firms in China," International Entrepreneurship and Management Journal, Springer, vol. 0, pages 1-15.
- Richard Chamboko & Jorge Miguel Bravo, 2020. "A Multi-State Approach to Modelling Intermediate Events and Multiple Mortgage Loan Outcomes," Risks, MDPI, vol. 8(2), pages 1-29, June.
- Weidong Guo & Zach Zhizhong Zhou, 2022. "A comparative study of combining tree‐based feature selection methods and classifiers in personal loan default prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1248-1313, September.
- K. Coussement & K. W. Bock & S. Geuens, 2022. "A decision-analytic framework for interpretable recommendation systems with multiple input data sources: a case study for a European e-tailer," Annals of Operations Research, Springer, vol. 315(2), pages 671-694, August.
- Doumpos, Michalis & Andriosopoulos, Kostas & Galariotis, Emilios & Makridou, Georgia & Zopounidis, Constantin, 2017. "Corporate failure prediction in the European energy sector: A multicriteria approach and the effect of country characteristics," European Journal of Operational Research, Elsevier, vol. 262(1), pages 347-360.
- Jianhua Jiang & Xianqiu Meng & Yang Liu & Huan Wang, 2022. "An Enhanced TSA-MLP Model for Identifying Credit Default Problems," SAGE Open, , vol. 12(2), pages 21582440221, April.
- Tanja Verster & Erika Fourie, 2023. "The Changing Landscape of Financial Credit Risk Models," IJFS, MDPI, vol. 11(3), pages 1-15, August.
- Michael Bucker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2020. "Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring," Papers 2009.13384, arXiv.org.
- Bart H. L. Overes & Michel van der Wel, 2021. "Modelling Sovereign Credit Ratings: Evaluating the Accuracy and Driving Factors using Machine Learning Techniques," Papers 2101.12684, arXiv.org, revised Jul 2021.
- Luisa Roa & Alejandro Correa-Bahnsen & Gabriel Suarez & Fernando Cort'es-Tejada & Mar'ia A. Luque & Cristi'an Bravo, 2020. "Super-App Behavioral Patterns in Credit Risk Models: Financial, Statistical and Regulatory Implications," Papers 2005.14658, arXiv.org, revised Jan 2021.
- Silva, Diego M.B. & Pereira, Gustavo H.A. & Magalhães, Tiago M., 2022. "A class of categorization methods for credit scoring models," European Journal of Operational Research, Elsevier, vol. 296(1), pages 323-331.
- Dangxing Chen, 2022. "Two-stage Modeling for Prediction with Confidence," Papers 2209.08848, arXiv.org.
- Adcock, C J & Meade, N, 2017. "Using parametric classification trees for model selection with applications to financial risk management," European Journal of Operational Research, Elsevier, vol. 259(2), pages 746-765.
- Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
- Tao Yu & Wei Huang & Xin Tang, 2023. "A Novel Fuzzy Unsupervised Quadratic Surface Support Vector Machine Based on DC Programming: An Application to Credit Risk Management," Mathematics, MDPI, vol. 11(22), pages 1-14, November.
- Dimitrios Nikolaidis & Michalis Doumpos, 2022. "Credit Scoring with Drift Adaptation Using Local Regions of Competence," SN Operations Research Forum, Springer, vol. 3(4), pages 1-28, December.
- De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
- Chen, Yujia & Calabrese, Raffaella & Martin-Barragan, Belen, 2024. "Interpretable machine learning for imbalanced credit scoring datasets," European Journal of Operational Research, Elsevier, vol. 312(1), pages 357-372.
- Erika Slabber & Tanja Verster & Riaan de Jongh, 2023. "Some Insights about the Applicability of Logistic Factorisation Machines in Banking," Risks, MDPI, vol. 11(3), pages 1-21, February.
- Chen, Dangxing & Ye, Jiahui & Ye, Weicheng, 2023. "Interpretable selective learning in credit risk," Research in International Business and Finance, Elsevier, vol. 65(C).
- Tomáš Vaněk & David Hampel, 2017. "The Probability of Default Under IFRS 9: Multi-period Estimation and Macroeconomic Forecast," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(2), pages 759-776.
- Joseph L. Breeden, 2024. "An Age–Period–Cohort Framework for Profit and Profit Volatility Modeling," Mathematics, MDPI, vol. 12(10), pages 1-23, May.
- Teng, Huei-Wen & Kang, Ming-Hsuan & Lee, I-Han & Bai, Le-Chi, 2024. "Bridging accuracy and interpretability: A rescaled cluster-then-predict approach for enhanced credit scoring," International Review of Financial Analysis, Elsevier, vol. 91(C).
- Óskarsdóttir, María & Bravo, Cristián, 2021. "Multilayer network analysis for improved credit risk prediction," Omega, Elsevier, vol. 105(C).
- Xiao, Jin & Zhong, Yu & Jia, Yanlin & Wang, Yadong & Li, Ruoyi & Jiang, Xiaoyi & Wang, Shouyang, 2024. "A novel deep ensemble model for imbalanced credit scoring in internet finance," International Journal of Forecasting, Elsevier, vol. 40(1), pages 348-372.
- Fitzpatrick, Trevor & Mues, Christophe, 2016. "An empirical comparison of classification algorithms for mortgage default prediction: evidence from a distressed mortgage market," European Journal of Operational Research, Elsevier, vol. 249(2), pages 427-439.
- Chris Charalambous & Spiros H. Martzoukos & Zenon Taoushianis, 2022. "Estimating corporate bankruptcy forecasting models by maximizing discriminatory power," Review of Quantitative Finance and Accounting, Springer, vol. 58(1), pages 297-328, January.
- Aneta Dzik-Walczak & Mateusz Heba, 2021. "An implementation of ensemble methods, logistic regression, and neural network for default prediction in Peer-to-Peer lending," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 39(1), pages 163-197.
- Naderi Semiromi, Hamed & Lessmann, Stefan & Peters, Wiebke, 2020. "News will tell: Forecasting foreign exchange rates based on news story events in the economy calendar," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Lkhagvadorj Munkhdalai & Tsendsuren Munkhdalai & Oyun-Erdene Namsrai & Jong Yun Lee & Keun Ho Ryu, 2019. "An Empirical Comparison of Machine-Learning Methods on Bank Client Credit Assessments," Sustainability, MDPI, vol. 11(3), pages 1-23, January.
- Mark Clintworth & Dimitrios Lyridis & Evangelos Boulougouris, 2023. "Financial risk assessment in shipping: a holistic machine learning based methodology," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 90-121, March.
- Laura Cristina Lanzarini & Augusto Villa Monte & Aurelio F. Bariviera & Patricia Jimbo Santana, 2017. "Simplifying credit scoring rules using LVQ+PSO," Papers 1704.04450, arXiv.org.
- Arno de Caigny & Kristof Coussement & Koen de Bock, 2020. "Leveraging fine-grained transaction data for customer life event predictions," Post-Print hal-02507998, HAL.
- Asim Roy & Shiban Qureshi & Kartikeya Pande & Divitha Nair & Kartik Gairola & Pooja Jain & Suraj Singh & Kirti Sharma & Akshay Jagadale & Yi-Yang Lin & Shashank Sharma & Ramya Gotety & Yuexin Zhang & , 2019. "Performance Comparison of Machine Learning Platforms," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 207-225, April.
- Dagmar Camska & Jiri Klecka, 2020. "Comparison of Prediction Models Applied in Economic Recession and Expansion," JRFM, MDPI, vol. 13(3), pages 1-16, March.
- Jing Quan & Xuelian Sun, 2024. "Credit risk assessment using the factorization machine model with feature interactions," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.