IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v285y2020i2p612-630.html
   My bibliography  Save this article

Cost-sensitive business failure prediction when misclassification costs are uncertain: A heterogeneous ensemble selection approach

Author

Listed:
  • De Bock, Koen W.
  • Coussement, Kristof
  • Lessmann, Stefan

Abstract

In order to assess risks associated with establishing relationships with corporate partners such as clients, suppliers, debtors or contractors, decision makers often turn to business failure prediction models. While a large body of literature has focused on optimizing and evaluating novel methods in terms of classification accuracy, recent research has acknowledged the existence of asymmetric misclassification costs associated with prediction errors and thus, advocates the usage of alternative evaluation metrics. However, these papers often assume a misclassification cost matrix to be known and fixed for both the training and the evaluation of models, whereas in reality these costs are often uncertain. This paper presents a methodological framework based upon heterogeneous ensemble selection and multi-objective optimization for cost-sensitive business failure prediction that accommodates uncertainty at the level of misclassification costs. The framework assumes unknown costs during model training and accommodates varying degrees of uncertainty during model deployment. Specifically, NSGA-II is deployed to optimize cost space resulting in a set of pareto-optimal ensemble classifiers where every learner minimizes expected misclassification cost for a specific range of cost ratios. An extensive set of experiments evaluates the method on multiple data sets and for different scenarios that reflect the extent to which cost ratios are known during model deployment. Results clearly demonstrate the ability of our method to minimize cost under the absence of exact knowledge of misclassification costs.

Suggested Citation

  • De Bock, Koen W. & Coussement, Kristof & Lessmann, Stefan, 2020. "Cost-sensitive business failure prediction when misclassification costs are uncertain: A heterogeneous ensemble selection approach," European Journal of Operational Research, Elsevier, vol. 285(2), pages 612-630.
  • Handle: RePEc:eee:ejores:v:285:y:2020:i:2:p:612-630
    DOI: 10.1016/j.ejor.2020.01.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720300898
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.01.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Lili & Shenoy, Prakash P., 2007. "Using Bayesian networks for bankruptcy prediction: Some methodological issues," European Journal of Operational Research, Elsevier, vol. 180(2), pages 738-753, July.
    2. Kolay, Madhuparna & Lemmon, Michael & Tashjian, Elizabeth, 2016. "Spreading the Misery? Sources of Bankruptcy Spillover in the Supply Chain," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(6), pages 1955-1990, December.
    3. Viaene, Stijn & Dedene, Guido, 2005. "Cost-sensitive learning and decision making revisited," European Journal of Operational Research, Elsevier, vol. 166(1), pages 212-220, October.
    4. Bauer, Julian & Agarwal, Vineet, 2014. "Are hazard models superior to traditional bankruptcy prediction approaches? A comprehensive test," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 432-442.
    5. Aykut Ekinci & Halil İbrahim Erdal, 2017. "Forecasting Bank Failure: Base Learners, Ensembles and Hybrid Ensembles," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 677-686, April.
    6. Sergio Davalos & Fei Leng & Ehsan H. Feroz & Zhiyan Cao, 2014. "Designing An If–Then Rules‐Based Ensemble Of Heterogeneous Bankruptcy Classifiers: A Genetic Algorithm Approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(3), pages 129-153, July.
    7. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    8. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    9. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    10. Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
    11. Michael Doumpos & Kostas Andriosopoulos & Emilios C. C Galariotis & Georgia Makridou & Constantin Zopounidis, 2017. "Corporate failure prediction in the European energy sector: A multicriteria approach and the effect of country characteristics," Post-Print hal-02879853, HAL.
    12. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    13. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    14. Doumpos, Michalis & Andriosopoulos, Kostas & Galariotis, Emilios & Makridou, Georgia & Zopounidis, Constantin, 2017. "Corporate failure prediction in the European energy sector: A multicriteria approach and the effect of country characteristics," European Journal of Operational Research, Elsevier, vol. 262(1), pages 347-360.
    15. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    16. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    17. Michalis Doumpos & Kostas Andriosopoulos & Emilios Galariotis & Georgia Makridou & Constantin Zopounidis, 2017. "Corporate failure prediction in the European energy sector: A multicriteria approach and the effect of country characteristics," Post-Print hal-01578092, HAL.
    18. Michael Doumpos & Constantin Zopounidis, 2007. "Model combination for credit risk assessment: A stacked generalization approach," Annals of Operations Research, Springer, vol. 151(1), pages 289-306, April.
    19. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    20. McGurr, Paul T. & DeVaney, Sharon A., 1998. "Predicting Business Failure of Retail Firms: An Analysis Using Mixed Industry Models," Journal of Business Research, Elsevier, vol. 43(3), pages 169-176, November.
    21. Sudheer Chava & Robert A. Jarrow, 2008. "Bankruptcy Prediction with Industry Effects," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 21, pages 517-549, World Scientific Publishing Co. Pte. Ltd..
    22. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    2. Xing, Jin & Chi, Guotai & Pan, Ancheng, 2024. "Instance-dependent misclassification cost-sensitive learning for default prediction," Research in International Business and Finance, Elsevier, vol. 69(C).
    3. Liu, Wanan & Fan, Hong & Xia, Meng, 2023. "Tree-based heterogeneous cascade ensemble model for credit scoring," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1593-1614.
    4. Vairetti, Carla & Gennaro, Franco & Maldonado, Sebastián, 2024. "Propensity score oversampling and matching for uplift modeling," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1058-1069.
    5. Benítez-Peña, Sandra & Blanquero, Rafael & Carrizosa, Emilio & Ramírez-Cobo, Pepa, 2024. "Cost-sensitive probabilistic predictions for support vector machines," European Journal of Operational Research, Elsevier, vol. 314(1), pages 268-279.
    6. Chao Fu & Dongyue Wang & Wenjun Chang, 2023. "Data-driven analysis of influence between radiologists for diagnosis of breast lesions," Annals of Operations Research, Springer, vol. 328(1), pages 419-449, September.
    7. Ahmed, Abdulaziz & Topuz, Kazim & Moqbel, Murad & Abdulrashid, Ismail, 2024. "What makes accidents severe! explainable analytics framework with parameter optimization," European Journal of Operational Research, Elsevier, vol. 317(2), pages 425-436.
    8. Borchert, Philipp & Coussement, Kristof & De Caigny, Arno & De Weerdt, Jochen, 2023. "Extending business failure prediction models with textual website content using deep learning," European Journal of Operational Research, Elsevier, vol. 306(1), pages 348-357.
    9. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    10. Michal Pavlicko & Marek Durica & Jaroslav Mazanec, 2021. "Ensemble Model of the Financial Distress Prediction in Visegrad Group Countries," Mathematics, MDPI, vol. 9(16), pages 1-26, August.
    11. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
    12. Deng, Shangkun & Luo, Qunfang & Zhu, Yingke & Ning, Hong & Shimada, Tatsuro, 2024. "Financial risk forewarning with an interpretable ensemble learning approach: An empirical analysis based on Chinese listed companies," Pacific-Basin Finance Journal, Elsevier, vol. 85(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koen W. de Bock & Kristof Coussement & Stefan Lessmann, 2020. "Cost-sensitive business failure prediction when misclassification costs are uncertain: A heterogeneous ensemble selection approach," Post-Print hal-02863245, HAL.
    2. Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
    3. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    4. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    5. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Documents de travail du Centre d'Economie de la Sorbonne 16016, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    6. Sebastian Klaudiusz Tomczak & Anna Skowrońska-Szmer & Jan Jakub Szczygielski, 2020. "Is Investing in Companies Manufacturing Solar Components a Lucrative Business? A Decision Tree Based Analysis," Energies, MDPI, vol. 13(2), pages 1-27, January.
    7. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Post-Print halshs-01281948, HAL.
    8. Zeineb Affes & Rania Hentati-Kaffel, 2019. "Predicting US Banks Bankruptcy: Logit Versus Canonical Discriminant Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 199-244, June.
    9. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    10. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    11. Christian Lohmann & Thorsten Ohliger, 2017. "Nonlinear Relationships and Their Effect on the Bankruptcy Prediction," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 18(3), pages 261-287, August.
    12. Ioannis Tsolas, 2015. "Firm credit risk evaluation: a series two-stage DEA modeling framework," Annals of Operations Research, Springer, vol. 233(1), pages 483-500, October.
    13. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    14. Christian Lohmann & Thorsten Ohliger, 2020. "Bankruptcy prediction and the discriminatory power of annual reports: empirical evidence from financially distressed German companies," Journal of Business Economics, Springer, vol. 90(1), pages 137-172, February.
    15. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    16. Salwa Kessioui & Michalis Doumpos & Constantin Zopounidis, 2023. "A Bibliometric Overview of the State-of-the-Art in Bankruptcy Prediction Methods and Applications," World Scientific Book Chapters, in: Emilios Galariotis & Alexandros Garefalakis & Christos Lemonakis & Marios Menexiadis & Constantin Zo (ed.), Governance and Financial Performance Current Trends and Perspectives, chapter 6, pages 123-153, World Scientific Publishing Co. Pte. Ltd..
    17. Soo Young Kim, 2018. "Predicting hospitality financial distress with ensemble models: the case of US hotels, restaurants, and amusement and recreation," Service Business, Springer;Pan-Pacific Business Association, vol. 12(3), pages 483-503, September.
    18. Dagmar Camska & Jiri Klecka, 2020. "Comparison of Prediction Models Applied in Economic Recession and Expansion," JRFM, MDPI, vol. 13(3), pages 1-16, March.
    19. Kim, Soo Y. & Upneja, Arun, 2014. "Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models," Economic Modelling, Elsevier, vol. 36(C), pages 354-362.
    20. Lohmann, Christian & Möllenhoff, Steffen, 2023. "Dark premonitions: Pre-bankruptcy investor attention and behavior," Journal of Banking & Finance, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:285:y:2020:i:2:p:612-630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.