Cost-sensitive business failure prediction when misclassification costs are uncertain: A heterogeneous ensemble selection approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2020.01.052
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sun, Lili & Shenoy, Prakash P., 2007. "Using Bayesian networks for bankruptcy prediction: Some methodological issues," European Journal of Operational Research, Elsevier, vol. 180(2), pages 738-753, July.
- Balcaen, Sofie & Ooghe, Hubert, 2006.
"35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems,"
The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
- S. Balcaen & H. Ooghe, 2004. "35 years of studies on business failure: an overview of the classical statistical methodologiesand their related problems," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/248, Ghent University, Faculty of Economics and Business Administration.
- Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
- Kolay, Madhuparna & Lemmon, Michael & Tashjian, Elizabeth, 2016. "Spreading the Misery? Sources of Bankruptcy Spillover in the Supply Chain," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(6), pages 1955-1990, December.
- Viaene, Stijn & Dedene, Guido, 2005. "Cost-sensitive learning and decision making revisited," European Journal of Operational Research, Elsevier, vol. 166(1), pages 212-220, October.
- Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
- Michalis Doumpos & Kostas Andriosopoulos & Emilios Galariotis & Georgia Makridou & Constantin Zopounidis, 2017. "Corporate failure prediction in the European energy sector: A multicriteria approach and the effect of country characteristics," Post-Print hal-01578092, HAL.
- Michael Doumpos & Constantin Zopounidis, 2007. "Model combination for credit risk assessment: A stacked generalization approach," Annals of Operations Research, Springer, vol. 151(1), pages 289-306, April.
- Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
- Bauer, Julian & Agarwal, Vineet, 2014. "Are hazard models superior to traditional bankruptcy prediction approaches? A comprehensive test," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 432-442.
- Aykut Ekinci & Halil İbrahim Erdal, 2017. "Forecasting Bank Failure: Base Learners, Ensembles and Hybrid Ensembles," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 677-686, April.
- McGurr, Paul T. & DeVaney, Sharon A., 1998. "Predicting Business Failure of Retail Firms: An Analysis Using Mixed Industry Models," Journal of Business Research, Elsevier, vol. 43(3), pages 169-176, November.
- Sergio Davalos & Fei Leng & Ehsan H. Feroz & Zhiyan Cao, 2014. "Designing An If–Then Rules‐Based Ensemble Of Heterogeneous Bankruptcy Classifiers: A Genetic Algorithm Approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(3), pages 129-153, July.
- Sudheer Chava & Robert A. Jarrow, 2008.
"Bankruptcy Prediction with Industry Effects,"
World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 21, pages 517-549,
World Scientific Publishing Co. Pte. Ltd..
- Sudheer Chava & Robert A. Jarrow, 2004. "Bankruptcy Prediction with Industry Effects," Review of Finance, European Finance Association, vol. 8(4), pages 537-569.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
- Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
- Michael Doumpos & Kostas Andriosopoulos & Emilios C. C Galariotis & Georgia Makridou & Constantin Zopounidis, 2017. "Corporate failure prediction in the European energy sector: A multicriteria approach and the effect of country characteristics," Post-Print hal-02879853, HAL.
- Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
- Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
- Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
- Doumpos, Michalis & Andriosopoulos, Kostas & Galariotis, Emilios & Makridou, Georgia & Zopounidis, Constantin, 2017. "Corporate failure prediction in the European energy sector: A multicriteria approach and the effect of country characteristics," European Journal of Operational Research, Elsevier, vol. 262(1), pages 347-360.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chao Fu & Dongyue Wang & Wenjun Chang, 2023. "Data-driven analysis of influence between radiologists for diagnosis of breast lesions," Annals of Operations Research, Springer, vol. 328(1), pages 419-449, September.
- Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
- Ahmed, Abdulaziz & Topuz, Kazim & Moqbel, Murad & Abdulrashid, Ismail, 2024. "What makes accidents severe! explainable analytics framework with parameter optimization," European Journal of Operational Research, Elsevier, vol. 317(2), pages 425-436.
- Borchert, Philipp & Coussement, Kristof & De Caigny, Arno & De Weerdt, Jochen, 2023. "Extending business failure prediction models with textual website content using deep learning," European Journal of Operational Research, Elsevier, vol. 306(1), pages 348-357.
- Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
- Michal Pavlicko & Marek Durica & Jaroslav Mazanec, 2021. "Ensemble Model of the Financial Distress Prediction in Visegrad Group Countries," Mathematics, MDPI, vol. 9(16), pages 1-26, August.
- Xing, Jin & Chi, Guotai & Pan, Ancheng, 2024. "Instance-dependent misclassification cost-sensitive learning for default prediction," Research in International Business and Finance, Elsevier, vol. 69(C).
- Liu, Wanan & Fan, Hong & Xia, Meng, 2023. "Tree-based heterogeneous cascade ensemble model for credit scoring," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1593-1614.
- De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
- Vairetti, Carla & Gennaro, Franco & Maldonado, Sebastián, 2024. "Propensity score oversampling and matching for uplift modeling," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1058-1069.
- Benítez-Peña, Sandra & Blanquero, Rafael & Carrizosa, Emilio & Ramírez-Cobo, Pepa, 2024. "Cost-sensitive probabilistic predictions for support vector machines," European Journal of Operational Research, Elsevier, vol. 314(1), pages 268-279.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Koen W. de Bock & Kristof Coussement & Stefan Lessmann, 2020. "Cost-sensitive business failure prediction when misclassification costs are uncertain: A heterogeneous ensemble selection approach," Post-Print hal-02863245, HAL.
- Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
- Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
- fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
- Zeineb Affes & Rania Hentati-Kaffel, 2016.
"Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis,"
Documents de travail du Centre d'Economie de la Sorbonne
16016, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01281948, HAL.
- Sebastian Klaudiusz Tomczak & Anna Skowrońska-Szmer & Jan Jakub Szczygielski, 2020. "Is Investing in Companies Manufacturing Solar Components a Lucrative Business? A Decision Tree Based Analysis," Energies, MDPI, vol. 13(2), pages 1-27, January.
- Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Post-Print halshs-01281948, HAL.
- Zeineb Affes & Rania Hentati-Kaffel, 2019. "Predicting US Banks Bankruptcy: Logit Versus Canonical Discriminant Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 199-244, June.
- du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
- Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
- Christian Lohmann & Thorsten Ohliger, 2017. "Nonlinear Relationships and Their Effect on the Bankruptcy Prediction," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 18(3), pages 261-287, August.
- Ioannis Tsolas, 2015. "Firm credit risk evaluation: a series two-stage DEA modeling framework," Annals of Operations Research, Springer, vol. 233(1), pages 483-500, October.
- Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
- Christian Lohmann & Thorsten Ohliger, 2020. "Bankruptcy prediction and the discriminatory power of annual reports: empirical evidence from financially distressed German companies," Journal of Business Economics, Springer, vol. 90(1), pages 137-172, February.
- Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
- Salwa Kessioui & Michalis Doumpos & Constantin Zopounidis, 2023. "A Bibliometric Overview of the State-of-the-Art in Bankruptcy Prediction Methods and Applications," World Scientific Book Chapters, in: Emilios Galariotis & Alexandros Garefalakis & Christos Lemonakis & Marios Menexiadis & Constantin Zo (ed.), Governance and Financial Performance Current Trends and Perspectives, chapter 6, pages 123-153, World Scientific Publishing Co. Pte. Ltd..
- Soo Young Kim, 2018. "Predicting hospitality financial distress with ensemble models: the case of US hotels, restaurants, and amusement and recreation," Service Business, Springer;Pan-Pacific Business Association, vol. 12(3), pages 483-503, September.
- Dagmar Camska & Jiri Klecka, 2020. "Comparison of Prediction Models Applied in Economic Recession and Expansion," JRFM, MDPI, vol. 13(3), pages 1-16, March.
- Kim, Soo Y. & Upneja, Arun, 2014. "Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models," Economic Modelling, Elsevier, vol. 36(C), pages 354-362.
- Lohmann, Christian & Möllenhoff, Steffen, 2023. "Dark premonitions: Pre-bankruptcy investor attention and behavior," Journal of Banking & Finance, Elsevier, vol. 151(C).
More about this item
Keywords
Business failure prediction; Cost-sensitive learning; Ensemble selection; Cost uncertainty; Multicriteria optimization; NSGA-II;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:285:y:2020:i:2:p:612-630. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.