Some Insights about the Applicability of Logistic Factorisation Machines in Banking
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Qiang Wang & Thanh-Tung Nguyen & Joshua Z. Huang & Thuy Thi Nguyen, 2018. "An efficient random forests algorithm for high dimensional data classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(4), pages 953-972, December.
- Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
- Davidescu Adriana AnaMaria & Agafiței Marina-Diana & Strat Vasile Alecsandru & Dima Alina Mihaela, 2024. "Mapping the Landscape: A Bibliometric Analysis of Rating Agencies in the Era of Artificial Intelligence and Machine Learning," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 67-85.
- He, Ni & Yongqiao, Wang & Tao, Jiang & Zhaoyu, Chen, 2022. "Self-Adaptive bagging approach to credit rating," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
- Li, Yibei & Wang, Ximei & Djehiche, Boualem & Hu, Xiaoming, 2020.
"Credit scoring by incorporating dynamic networked information,"
European Journal of Operational Research, Elsevier, vol. 286(3), pages 1103-1112.
- Yibei Li & Ximei Wang & Boualem Djehiche & Xiaoming Hu, 2019. "Credit Scoring by Incorporating Dynamic Networked Information," Papers 1905.11795, arXiv.org, revised Oct 2019.
- Davide Nicola Continanza & Andrea del Monaco & Marco di Lucido & Daniele Figoli & Pasquale Maddaloni & Filippo Quarta & Giuseppe Turturiello, 2023.
"Stacking machine learning models for anomaly detection: comparing AnaCredit to other banking data sets,"
IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59,
Bank for International Settlements.
- Pasquale Maddaloni & Davide Nicola Continanza & Andrea del Monaco & Daniele Figoli & Marco di Lucido & Filippo Quarta & Giuseppe Turturiello, 2022. "Stacking machine-learning models for anomaly detection: comparing AnaCredit to other banking datasets," Questioni di Economia e Finanza (Occasional Papers) 689, Bank of Italy, Economic Research and International Relations Area.
- Lismont, Jasmien & Vanthienen, Jan & Baesens, Bart & Lemahieu, Wilfried, 2017. "Defining analytics maturity indicators: A survey approach," International Journal of Information Management, Elsevier, vol. 37(3), pages 114-124.
- Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
- Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
- Rasa Kanapickiene & Renatas Spicas, 2019. "Credit Risk Assessment Model for Small and Micro-Enterprises: The Case of Lithuania," Risks, MDPI, vol. 7(2), pages 1-23, June.
- Zhou, Jing & Li, Wei & Wang, Jiaxin & Ding, Shuai & Xia, Chengyi, 2019. "Default prediction in P2P lending from high-dimensional data based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
- Hu'e Sullivan & Hurlin Christophe & P'erignon Christophe & Saurin S'ebastien, 2022. "Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring," Papers 2212.05866, arXiv.org, revised Jun 2023.
- De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
- Topuz, Kazim & Urban, Timothy L. & Yildirim, Mehmet B., 2024. "A Markovian score model for evaluating provider performance for continuity of care—An explainable analytics approach," European Journal of Operational Research, Elsevier, vol. 317(2), pages 341-351.
- Shiqi Fang & Zexun Chen & Jake Ansell, 2024. "Peer-induced Fairness: A Causal Approach for Algorithmic Fairness Auditing," Papers 2408.02558, arXiv.org, revised Sep 2024.
- Cao Son Tran & Dan Nicolau & Richi Nayak & Peter Verhoeven, 2021. "Modeling Credit Risk: A Category Theory Perspective," JRFM, MDPI, vol. 14(7), pages 1-21, July.
- Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
- Ivan Tikshaev & Roman Kulshin & Gennadii Volokitin & Pavel Senchenko & Anatoly Sidorov, 2022. "The Possibilities of Using Scoring to Determine the Relevance of Software Development Tenders," Mathematics, MDPI, vol. 10(24), pages 1-13, December.
- Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
- Aggarwal, Nidhi & Singh, Manish K. & Thomas, Susan, 2023. "Do decreases in Distance-to-Default predict rating downgrades?," Economic Modelling, Elsevier, vol. 129(C).
- Lessmann, Stefan & Voß, Stefan, 2017. "Car resale price forecasting: The impact of regression method, private information, and heterogeneity on forecast accuracy," International Journal of Forecasting, Elsevier, vol. 33(4), pages 864-877.
More about this item
Keywords
logistic regression; factorisation machines; random forests; machine learning; recommender system; credit scoring; logit loss; maximum likelihood estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:11:y:2023:i:3:p:48-:d:1075868. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.