IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v38y2022i3p1158-1172.html
   My bibliography  Save this article

Assessing and predicting small industrial enterprises’ credit ratings: A fuzzy decision-making approach

Author

Listed:
  • Sun, Yue
  • Chai, Nana
  • Dong, Yizhe
  • Shi, Baofeng

Abstract

Corporate credit-rating assessment plays a crucial role in helping financial institutions make their lending decisions and in reducing the financial constraints of small enterprises. This paper presents a new approach for small industrial enterprises’ credit-rating assessment using fuzzy decision-making methods and then tests this novel approach using real bank loan data from 1820 small industrial enterprises in China. The procedure of the proposed rating approach includes (1) using triangular fuzzy numbers to quantify the qualitative evaluation indicators; (2) adopting a correlation analysis, univariate analysis, and stepping backward feature selection method to select the input features; (3) employing the best-worst method (BWM) combined with the entropy weight method (EWM), the fuzzy c-means algorithm and the technique for order of preference by similarity to ideal solution (TOPSIS) to classify small enterprises into different rating classes; and (4) applying the lattice degree of nearness to predict a new loan applicant’s rating. We also conduct 10-fold cross-validation to evaluate the predictive performance of our proposed approach. The predictive results demonstrate that our proposed data-processing and feature selection approaches have better accuracy than the alternative approaches in predicting default, offering bankers a new valuable rating system to assist their decision making.

Suggested Citation

  • Sun, Yue & Chai, Nana & Dong, Yizhe & Shi, Baofeng, 2022. "Assessing and predicting small industrial enterprises’ credit ratings: A fuzzy decision-making approach," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1158-1172.
  • Handle: RePEc:eee:intfor:v:38:y:2022:i:3:p:1158-1172
    DOI: 10.1016/j.ijforecast.2022.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207022000061
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2022.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanhao Wei & Pinar Yildirim & Christophe Van den Bulte & Chrysanthos Dellarocas, 2016. "Credit Scoring with Social Network Data," Marketing Science, INFORMS, vol. 35(2), pages 234-258, March.
    2. Mar Molinero, C. & Apellaniz Gomez, P. & Serrano Cinca, C., 1996. "A multivariate study of spanish bond ratings," Omega, Elsevier, vol. 24(4), pages 451-462, August.
    3. Kaposty, Florian & Kriebel, Johannes & Löderbusch, Matthias, 2020. "Predicting loss given default in leasing: A closer look at models and variable selection," International Journal of Forecasting, Elsevier, vol. 36(2), pages 248-266.
    4. Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
    5. Itay Goldstein & Chester S Spatt & Mao Ye, 2021. "Big Data in Finance," NBER Chapters, in: Big Data: Long-Term Implications for Financial Markets and Firms, pages 3213-3225, National Bureau of Economic Research, Inc.
    6. Hoffmann, F. & Baesens, B. & Mues, C. & Van Gestel, T. & Vanthienen, J., 2007. "Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 540-555, February.
    7. Shi, Baofeng & Chi, Guotai & Li, Weiping, 2020. "Exploring the mismatch between credit ratings and loss-given-default: A credit risk approach," Economic Modelling, Elsevier, vol. 85(C), pages 420-428.
    8. Trivedi, Shrawan Kumar, 2020. "A study on credit scoring modeling with different feature selection and machine learning approaches," Technology in Society, Elsevier, vol. 63(C).
    9. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    10. Chrysovalantis Gaganis & Panagiota Papadimitri & Menelaos Tasiou, 2021. "A multicriteria decision support tool for modelling bank credit ratings," Annals of Operations Research, Springer, vol. 306(1), pages 27-56, November.
    11. Bai, Chunguang & Shi, Baofeng & Liu, Feng & Sarkis, Joseph, 2019. "Banking credit worthiness: Evaluating the complex relationships," Omega, Elsevier, vol. 83(C), pages 26-38.
    12. Nana Chai & Bi Wu & Weiwei Yang & Baofeng Shi, 2019. "A Multicriteria Approach for Modeling Small Enterprise Credit Rating: Evidence from China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(11), pages 2523-2543, September.
    13. Yiheng Li & Weidong Chen, 2021. "Entropy method of constructing a combined model for improving loan default prediction: A case study in China," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(5), pages 1099-1109, May.
    14. Bravo, Cristián & Maldonado, Sebastián & Weber, Richard, 2013. "Granting and managing loans for micro-entrepreneurs: New developments and practical experiences," European Journal of Operational Research, Elsevier, vol. 227(2), pages 358-366.
    15. Hong Wang & Qingsong Xu & Lifeng Zhou, 2015. "Large Unbalanced Credit Scoring Using Lasso-Logistic Regression Ensemble," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-20, February.
    16. B Baesens & T Van Gestel & S Viaene & M Stepanova & J Suykens & J Vanthienen, 2003. "Benchmarking state-of-the-art classification algorithms for credit scoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 627-635, June.
    17. Altman, Edward I., 1998. "The importance and subtlety of credit rating migration," Journal of Banking & Finance, Elsevier, vol. 22(10-11), pages 1231-1247, October.
    18. Tanoue, Yuta & Kawada, Akihiro & Yamashita, Satoshi, 2017. "Forecasting loss given default of bank loans with multi-stage model," International Journal of Forecasting, Elsevier, vol. 33(2), pages 513-522.
    19. Pinches, George E & Mingo, Kent A, 1975. "The Role of Subordination and Industrial Bond Ratings," Journal of Finance, American Finance Association, vol. 30(1), pages 201-206, March.
    20. Chia-Liang Lin & Kuan-Min Wang, 2011. "Predicting the bankruptcy risk of Taiwanese OTC corporations," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 9(3), pages 301-316.
    21. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2015. "Partial correlation analysis: applications for financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 569-578, April.
    22. Raffaella Calabrese & Galina Andreeva & Jake Ansell, 2019. "“Birds of a Feather” Fail Together: Exploring the Nature of Dependency in SME Defaults," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 71-84, January.
    23. Itay Goldstein & Chester S. Spatt & Mao Ye, 2021. "Big Data in Finance," NBER Working Papers 28615, National Bureau of Economic Research, Inc.
    24. Rezaei, Jafar, 2016. "Best-worst multi-criteria decision-making method: Some properties and a linear model," Omega, Elsevier, vol. 64(C), pages 126-130.
    25. Baofeng Shi & Bin Meng & Hufeng Yang & Jing Wang & Wenli Shi, 2018. "A Novel Approach for Reducing Attributes and Its Application to Small Enterprise Financing Ability Evaluation," Complexity, Hindawi, vol. 2018, pages 1-17, January.
    26. Itay Goldstein & Chester S Spatt & Mao Ye, 2021. "Big Data in Finance [Institutional order handling and broker-affiliated trading venues]," The Review of Financial Studies, Society for Financial Studies, vol. 34(7), pages 3213-3225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chai, Nana & Shi, Baofeng & Hua, Yiting, 2023. "Loss given default or default status: Which is better to determine farmers’ credit ratings?," Finance Research Letters, Elsevier, vol. 53(C).
    2. Nana Chai & Baofeng Shi & Bin Meng & Yizhe Dong, 2023. "Default Feature Selection in Credit Risk Modeling: Evidence From Chinese Small Enterprises," SAGE Open, , vol. 13(2), pages 21582440231, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nana Chai & Baofeng Shi & Bin Meng & Yizhe Dong, 2023. "Default Feature Selection in Credit Risk Modeling: Evidence From Chinese Small Enterprises," SAGE Open, , vol. 13(2), pages 21582440231, April.
    2. Nadia Ayed & Khemaies Bougatef, 2024. "Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1803-1835, September.
    3. Shi, Baofeng & Chi, Guotai & Li, Weiping, 2020. "Exploring the mismatch between credit ratings and loss-given-default: A credit risk approach," Economic Modelling, Elsevier, vol. 85(C), pages 420-428.
    4. Michalski, Lachlan & Low, Rand Kwong Yew, 2024. "Determinants of corporate credit ratings: Does ESG matter?," International Review of Financial Analysis, Elsevier, vol. 94(C).
    5. Cao, Sean & Jiang, Wei & Wang, Junbo & Yang, Baozhong, 2024. "From Man vs. Machine to Man + Machine: The art and AI of stock analyses," Journal of Financial Economics, Elsevier, vol. 160(C).
    6. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023. "The commodity risk premium and neural networks," Journal of Empirical Finance, Elsevier, vol. 74(C).
    7. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    8. Mahsa Samsami & Ralf Wagner, 2021. "Investment Decisions with Endogeneity: A Dirichlet Tree Analysis," JRFM, MDPI, vol. 14(7), pages 1-19, July.
    9. Yuan, Kunpeng & Chi, Guotai & Zhou, Ying & Yin, Hailei, 2022. "A novel two-stage hybrid default prediction model with k-means clustering and support vector domain description," Research in International Business and Finance, Elsevier, vol. 59(C).
    10. Niu, Yuhao & Wang, Sai & Wen, Wen & Li, Sifei, 2023. "Does digital transformation speed up dynamic capital structure adjustment? Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 79(C).
    11. Maria Saveria Mavillonio, 2024. "Natural Language Processing Techniques for Long Financial Document," Discussion Papers 2024/317, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    12. Teply, Petr & Polena, Michal, 2020. "Best classification algorithms in peer-to-peer lending," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    13. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    14. Li, Zhe & Liang, Shuguang & Pan, Xianyou & Pang, Meng, 2024. "Credit risk prediction based on loan profit: Evidence from Chinese SMEs," Research in International Business and Finance, Elsevier, vol. 67(PA).
    15. Wang, Sai & Wen, Wen & Niu, Yuhao & Li, Xin, 2024. "Digital transformation and corporate labor investment efficiency," Emerging Markets Review, Elsevier, vol. 59(C).
    16. Medina-Olivares, Victor & Calabrese, Raffaella & Dong, Yizhe & Shi, Baofeng, 2022. "Spatial dependence in microfinance credit default," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1071-1085.
    17. Edmans, Alex & Fernandez-Perez, Adrian & Garel, Alexandre & Indriawan, Ivan, 2022. "Music sentiment and stock returns around the world," Journal of Financial Economics, Elsevier, vol. 145(2), pages 234-254.
    18. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    19. Day, Min-Yuh & Ni, Yensen, 2023. "Be greedy when others are fearful: Evidence from a two-decade assessment of the NDX 100 and S&P 500 indexes," International Review of Financial Analysis, Elsevier, vol. 90(C).
    20. Arnold, Lutz G. & Russ, David, 2024. "Listening to the noise: On price efficiency with dynamic trading," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 103-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:38:y:2022:i:3:p:1158-1172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.