IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v205y2024ics0040162524002877.html
   My bibliography  Save this article

Who gets the money? A qualitative analysis of fintech lending and credit scoring through the adoption of AI and alternative data

Author

Listed:
  • Tigges, Maximilian
  • Mestwerdt, Sönke
  • Tschirner, Sebastian
  • Mauer, René

Abstract

Credit scoring plays an important role in determining the accessibility of credit in the financial sector. This in turn has a significant impact on how economic opportunities are distributed. Our study examines the use of AI and alternative data in fintech lending through the lens of Information Asymmetry Theory. By employing a qualitative research design using the Gioia method, we extract, analyze, and synthesize insights from a diverse group of 26 experts in fintech lending, artificial intelligence, machine learning, data science, and academia. Our results reveal several important findings: the enhancement of predictive proficiency and risk management, the decrease in default rates, the extension of credit access by including previously ‘unbanked populations’, the introduction of real-time creditworthiness assessment and new business models for entrepreneurs, the enhancement of credit market efficiencies and positive effects on the stability of financial markets. In addition, our study highlights the necessity for rigorous and critical ethical considerations of important challenges such as the question of consent, algorithmic transparency, data quality, data misuse, representativeness, traceability, responsibility, bias and discrimination. The reasonable goal of a more fair, resilient, sustainable and accessible credit system will require a joint effort to balance leveraging technological innovations with respecting peoples' right to privacy.

Suggested Citation

  • Tigges, Maximilian & Mestwerdt, Sönke & Tschirner, Sebastian & Mauer, René, 2024. "Who gets the money? A qualitative analysis of fintech lending and credit scoring through the adoption of AI and alternative data," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:tefoso:v:205:y:2024:i:c:s0040162524002877
    DOI: 10.1016/j.techfore.2024.123491
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162524002877
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2024.123491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:205:y:2024:i:c:s0040162524002877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.