IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v51y2020ics1062940818302262.html
   My bibliography  Save this article

Best classification algorithms in peer-to-peer lending

Author

Listed:
  • Teply, Petr
  • Polena, Michal

Abstract

A proper credit scoring technique is vital to the long-term success of all kinds of financial institutions, including peer-to-peer (P2P) lending platforms. The main contribution of our paper is the robust ranking of 10 different classification techniques based on a real-world P2P lending data set. Our data set comes from the Lending Club covering the 2009–2013 period, which contains 212,252 records and 23 different variables. Unlike other researchers, we use a data sample which contains the final loan resolution for all loans. We built our research using a 5-fold cross-validation method and 6 different classification performance measurements. Our results show that logistic regression, artificial neural networks, and linear discriminant analysis are the three best algorithms based on the Lending Club data. Conversely, we identify k-nearest neighbors and classification and regression tree as the two worst classification methods.

Suggested Citation

  • Teply, Petr & Polena, Michal, 2020. "Best classification algorithms in peer-to-peer lending," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
  • Handle: RePEc:eee:ecofin:v:51:y:2020:i:c:s1062940818302262
    DOI: 10.1016/j.najef.2019.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940818302262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2019.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541, September.
    2. Devin G. Pope & Justin R. Sydnor, 2011. "What’s in a Picture?: Evidence of Discrimination from Prosper.com," Journal of Human Resources, University of Wisconsin Press, vol. 46(1), pages 53-92.
    3. Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
    4. Herzenstein, Michal & Dholakia, Utpal M. & Andrews, Rick L., 2011. "Strategic Herding Behavior in Peer-to-Peer Loan Auctions," Journal of Interactive Marketing, Elsevier, vol. 25(1), pages 27-36.
    5. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    6. Mingfeng Lin & Nagpurnanand R. Prabhala & Siva Viswanathan, 2013. "Judging Borrowers by the Company They Keep: Friendship Networks and Information Asymmetry in Online Peer-to-Peer Lending," Management Science, INFORMS, vol. 59(1), pages 17-35, August.
    7. Juanjuan Zhang & Peng Liu, 2012. "Rational Herding in Microloan Markets," Management Science, INFORMS, vol. 58(5), pages 892-912, May.
    8. B Baesens & T Van Gestel & S Viaene & M Stepanova & J Suykens & J Vanthienen, 2003. "Benchmarking state-of-the-art classification algorithms for credit scoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 627-635, June.
    9. Michal Polena & Tobias Regner, 2018. "Determinants of Borrowers’ Default in P2P Lending under Consideration of the Loan Risk Class," Games, MDPI, vol. 9(4), pages 1-17, October.
    10. Carlos Serrano-Cinca & Begoña Gutiérrez-Nieto & Luz López-Palacios, 2015. "Determinants of Default in P2P Lending," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    11. Jefferson Duarte & Stephan Siegel & Lance Young, 2012. "Trust and Credit: The Role of Appearance in Peer-to-peer Lending," The Review of Financial Studies, Society for Financial Studies, vol. 25(8), pages 2455-2484.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yi & Yang, Menglong & Wang, Yudong & Li, Yongshan & Xiong, Tiancheng & Li, Anzhe, 2022. "Applying machine learning algorithms to predict default probability in the online credit market: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 79(C).
    2. Çağlar Hamarat & Daniel Broby, 2022. "Regulatory constraint and small business lending: do innovative peer-to-peer lenders have an advantage?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    3. Samuel Ribeiro-Navarrete & Juan Piñeiro-Chousa & M. Ángeles López-Cabarcos & Daniel Palacios-Marqués, 2022. "Crowdlending: mapping the core literature and research frontiers," Review of Managerial Science, Springer, vol. 16(8), pages 2381-2411, November.
    4. Gero Friedrich Bone-Winkel & Felix Reichenbach, 2024. "Improving credit risk assessment in P2P lending with explainable machine learning survival analysis," Digital Finance, Springer, vol. 6(3), pages 501-542, September.
    5. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    6. Cao Son Tran & Dan Nicolau & Richi Nayak & Peter Verhoeven, 2021. "Modeling Credit Risk: A Category Theory Perspective," JRFM, MDPI, vol. 14(7), pages 1-21, July.
    7. Surjaningsih, Ndari & Werdaningtyas, Hesti & Rahman, Faizal & Falaqh, Romadhon, 2022. "Predicting Household Resilience Before and During Pandemic with Classifier Algorithms," OSF Preprints w5q9g, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Käfer, 2016. "Peer-to-Peer Lending – A (Financial Stability) Risk Perspective," MAGKS Papers on Economics 201622, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    2. Serena Gallo, 2021. "Fintech platforms: Lax or careful borrowers’ screening?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-33, December.
    3. Xia, Yufei & Zhao, Junhao & He, Lingyun & Li, Yinguo & Yang, Xiaoli, 2021. "Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1590-1613.
    4. Belleflamme, Paul & Omrani, Nessrine & Peitz, Martin, 2015. "The economics of crowdfunding platforms," Information Economics and Policy, Elsevier, vol. 33(C), pages 11-28.
    5. Carlos Serrano-Cinca & Begoña Gutiérrez-Nieto & Luz López-Palacios, 2015. "Determinants of Default in P2P Lending," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    6. Samuel Ribeiro-Navarrete & Juan Piñeiro-Chousa & M. Ángeles López-Cabarcos & Daniel Palacios-Marqués, 2022. "Crowdlending: mapping the core literature and research frontiers," Review of Managerial Science, Springer, vol. 16(8), pages 2381-2411, November.
    7. Xueru Chen & Xiaoji Hu & Shenglin Ben, 2021. "How do reputation, structure design and FinTech ecosystem affect the net cash inflow of P2P lending platforms? Evidence from China," Electronic Commerce Research, Springer, vol. 21(4), pages 1055-1082, December.
    8. Carla Martínez-Climent & Ana Zorio-Grima & Domingo Ribeiro-Soriano, 2018. "Financial return crowdfunding: literature review and bibliometric analysis," International Entrepreneurship and Management Journal, Springer, vol. 14(3), pages 527-553, September.
    9. Lu, Haitian & Wang, Bo & Wang, Haizhi & Zhao, Tianyu, 2020. "Does social capital matter for peer-to-peer-lending? Empirical evidence," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    10. Bryan Bollinger & Song Yao, 2018. "Risk transfer versus cost reduction on two-sided microfinance platforms," Quantitative Marketing and Economics (QME), Springer, vol. 16(3), pages 251-287, September.
    11. Kgoroeadira, Reabetswe & Burke, Andrew & Di Pietro, Francesca & van Stel, André, 2023. "Determinants of firms’ default on unsecured loans in the P2P crowdfunding market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 89(C).
    12. Hongchang Wang & Eric M. Overby, 2022. "How Does Online Lending Influence Bankruptcy Filings?," Management Science, INFORMS, vol. 68(5), pages 3309-3329, May.
    13. Wang, Congcong & Tong, Lin, 2020. "Lender rationality and trade-off behavior: Evidence from Lending Club and Renrendai," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 55-66.
    14. Dongyu Chen & Xiaolin Li & Fujun Lai, 2017. "Gender discrimination in online peer-to-peer credit lending: evidence from a lending platform in China," Electronic Commerce Research, Springer, vol. 17(4), pages 553-583, December.
    15. Hongchang Wang & Eric Overby, 2023. "Do Political Differences Inhibit Market Transactions? An Investigation in the Context of Online Lending," Management Science, INFORMS, vol. 69(8), pages 4685-4706, August.
    16. Wei Liu & Li-Qiu Xia, 2017. "An Evolutionary Behavior Forecasting Model for Online Lenders and Borrowers in Peer-to-Peer Lending," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-14, February.
    17. Adam Nowak & Amanda Ross & Christopher Yencha, 2018. "Small Business Borrowing And Peer‐To‐Peer Lending: Evidence From Lending Club," Contemporary Economic Policy, Western Economic Association International, vol. 36(2), pages 318-336, April.
    18. Michal Polena & Tobias Regner, 2018. "Determinants of Borrowers’ Default in P2P Lending under Consideration of the Loan Risk Class," Games, MDPI, vol. 9(4), pages 1-17, October.
    19. Demir, Tolga & Mohammad, Ali & Shafi, Kourosh, 2019. "Crowdfunding as Gambling: Evidence from Repeated Natural Experiments," Working Paper Series in Economics and Institutions of Innovation 481, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    20. Kai Lu & Zaiyan Wei & Tat Y. Chan, 2022. "Information Asymmetry Among Investors and Strategic Bidding in Peer-to-Peer Lending," Information Systems Research, INFORMS, vol. 33(3), pages 824-845, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:51:y:2020:i:c:s1062940818302262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.