IDEAS home Printed from https://ideas.repec.org/a/kap/rqfnac/v58y2022i1d10.1007_s11156-021-00995-0.html
   My bibliography  Save this article

Estimating corporate bankruptcy forecasting models by maximizing discriminatory power

Author

Listed:
  • Chris Charalambous

    (University of Cyprus)

  • Spiros H. Martzoukos

    (University of Cyprus)

  • Zenon Taoushianis

    (University of Southampton)

Abstract

In this paper, we estimate coefficients of bankruptcy forecasting models, such as logistic and neural network models, by maximizing their discriminatory power as measured by the Area Under Receiver Operating Characteristics (AUROC) curve. A method is introduced and compared with traditional logistic and neural network models, using out-of-sample analysis, in terms of discriminatory power, information content and economic impact while we forecast bankruptcy one year ahead, two years ahead but also financial distress, which is a situation that precedes firm bankruptcy. Using US public firms over the period 1990–2015, in all, we find that training models to maximize AUROC, provides more accurate out-of-sample forecasts relative to training them with traditional methods, such as maximizing the log-likelihood function, highlighting the benefits arising by using models with maximized AUROC. Among all models, however, a neural network trained with our method is the best performing one, even when we compare it with other methods proposed in the literature to maximize AUROC. Finally, our results are more pronounced when we increase the forecasting difficulty, such as forecasting financial distress. The implementation of our method to train bankruptcy models is robust in various settings and therefore well-justified.

Suggested Citation

  • Chris Charalambous & Spiros H. Martzoukos & Zenon Taoushianis, 2022. "Estimating corporate bankruptcy forecasting models by maximizing discriminatory power," Review of Quantitative Finance and Accounting, Springer, vol. 58(1), pages 297-328, January.
  • Handle: RePEc:kap:rqfnac:v:58:y:2022:i:1:d:10.1007_s11156-021-00995-0
    DOI: 10.1007/s11156-021-00995-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11156-021-00995-0
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11156-021-00995-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris Charalambous & Spiros H. Martzoukos & Zenon Taoushianis, 2020. "Predicting corporate bankruptcy using the framework of Leland-Toft: evidence from U.S," Quantitative Finance, Taylor & Francis Journals, vol. 20(2), pages 329-346, February.
    2. Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
    3. Wu, Y. & Gaunt, C. & Gray, S., 2010. "A comparison of alternative bankruptcy prediction models," Journal of Contemporary Accounting and Economics, Elsevier, vol. 6(1), pages 34-45.
    4. Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
    5. Paul Asquith & Robert Gertner & David Scharfstein, 1994. "Anatomy of Financial Distress: An Examination of Junk-Bond Issuers," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 109(3), pages 625-658.
    6. Chris Charalambous & Nicos Christofides & Eleni D. Constantinide & Spiros H. Martzoukos, 2007. "Implied non-recombining trees and calibration for the volatility smile," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 459-472.
    7. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    8. Edward I. Altman & Gabriele Sabato, 2013. "MODELING CREDIT RISK FOR SMEs: EVIDENCE FROM THE US MARKET," World Scientific Book Chapters, in: Oliviero Roggi & Edward I Altman (ed.), Managing and Measuring Risk Emerging Global Standards and Regulations After the Financial Crisis, chapter 9, pages 251-279, World Scientific Publishing Co. Pte. Ltd..
    9. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    10. Charitou, Andreas & Dionysiou, Dionysia & Lambertides, Neophytos & Trigeorgis, Lenos, 2013. "Alternative bankruptcy prediction models using option-pricing theory," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2329-2341.
    11. Jairaj Gupta & Andros Gregoriou & Tahera Ebrahimi, 2018. "Empirical comparison of hazard models in predicting SMEs failure," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 437-466, March.
    12. Filipe, Sara Ferreira & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Forecasting distress in European SME portfolios," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 112-135.
    13. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    14. Panayiotis Papakyriakou & Athanasios Sakkas & Zenon Taoushianis, 2019. "Financial firm bankruptcies, international stock markets, and investor sentiment," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 461-473, January.
    15. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    16. Sudheer Chava & Robert A. Jarrow, 2008. "Bankruptcy Prediction with Industry Effects," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 21, pages 517-549, World Scientific Publishing Co. Pte. Ltd..
    17. Blochlinger, Andreas & Leippold, Markus, 2006. "Economic benefit of powerful credit scoring," Journal of Banking & Finance, Elsevier, vol. 30(3), pages 851-873, March.
    18. Afik, Zvika & Arad, Ohad & Galil, Koresh, 2016. "Using Merton model for default prediction: An empirical assessment of selected alternatives," Journal of Empirical Finance, Elsevier, vol. 35(C), pages 43-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoang Hiep Nguyen & Jean-Laurent Viviani & Sami Ben Jabeur, 2023. "Bankruptcy prediction using machine learning and Shapley additive explanations," Post-Print hal-04223161, HAL.
    2. Silver, Steven D. & Raseta, Marko & Bazarova, Alina, 2023. "Stochastic resonance in the recovery of signal from agent price expectations," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," JRFM, MDPI, vol. 12(4), pages 1-17, September.
    2. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    3. Ugur, Mehmet & Solomon, Edna & Zeynalov, Ayaz, 2022. "Leverage, competition and financial distress hazard: Implications for capital structure in the presence of agency costs," Economic Modelling, Elsevier, vol. 108(C).
    4. Bátiz-Zuk Enrique & Mohamed Abdulkadir & Sánchez-Cajal Fátima, 2021. "Exploring the sources of loan default clustering using survival analysis with frailty," Working Papers 2021-14, Banco de México.
    5. John Nkwoma Inekwe, 2016. "Financial Distress, Employees’ Welfare and Entrepreneurship Among SMEs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(3), pages 1135-1153, December.
    6. Vo, D.H. & Pham, B.V.-N. & Pham, T.V.-T. & McAleer, M.J., 2019. "Corporate Financial Distress of Industry Level Listings in an Emerging Market," Econometric Institute Research Papers EI2019-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
    8. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    9. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    10. Ashraf, Sumaira & Félix, Elisabete G.S. & Serrasqueiro, Zélia, 2020. "Development and testing of an augmented distress prediction model: A comparative study on a developed and an emerging market," Journal of Multinational Financial Management, Elsevier, vol. 57.
    11. Nawaf Almaskati & Ron Bird & Yue Lu & Danny Leung, 2019. "The Role of Corporate Governance and Estimation Methods in Predicting Bankruptcy," Working Papers in Economics 19/16, University of Waikato.
    12. Elena Gregova & Katarina Valaskova & Peter Adamko & Milos Tumpach & Jaroslav Jaros, 2020. "Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    13. Sanjay Sehgal & Ritesh Kumar Mishra & Ajay Jaisawal, 2021. "A search for macroeconomic determinants of corporate financial distress," Indian Economic Review, Springer, vol. 56(2), pages 435-461, December.
    14. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    15. Qunfeng LIAO & Seyed MEHDIAN, 2016. "Measuring Financial Distress And Predicting Corporate Bankruptcy: An Index Approach," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 17, pages 33-51, June.
    16. Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
    17. De Bock, Koen W. & Coussement, Kristof & Lessmann, Stefan, 2020. "Cost-sensitive business failure prediction when misclassification costs are uncertain: A heterogeneous ensemble selection approach," European Journal of Operational Research, Elsevier, vol. 285(2), pages 612-630.
    18. Gupta, Jairaj & Chaudhry, Sajid, 2019. "Mind the tail, or risk to fail," Journal of Business Research, Elsevier, vol. 99(C), pages 167-185.
    19. Daniel Boos & Nikolaos Karampatsas & Wolfgang Garn & Lampros K. Stergioulas, 2024. "Predicting corporate restructuring and financial distress in banks: The case of the Swiss banking industry," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 47(2), pages 497-533, June.
    20. Michal Karas & Mária Režòáková, 2021. "The role of financial constraint factors in predicting SME default," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 16(4), pages 859-883, December.

    More about this item

    Keywords

    Bankruptcy Forecasting; Discriminatory Power; AUROC; Optimization; Economic Benefits;
    All these keywords.

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:rqfnac:v:58:y:2022:i:1:d:10.1007_s11156-021-00995-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.