IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i1d10.1007_s10479-023-05209-5.html
   My bibliography  Save this article

Improving the predictive accuracy of the cross-selling of consumer loans using deep learning networks

Author

Listed:
  • Noureddine Boustani

    (Aston University)

  • Ali Emrouznejad

    (University of Surrey)

  • Roya Gholami

    (University of Illinois Springfield)

  • Ozren Despic

    (Aston University)

  • Athina Ioannou

    (University of Surrey)

Abstract

Traditionally most cross-selling models in retail banking use demographics information and interactions with marketing as input to statistical models or machine learning algorithms to predict whether a customer is willing to purchase a given financial product or not. We overcome with such limitation by building several models that also use several years of account transaction data. The objective of this study is to analysis credit card transactions of customers, in order to come up with a good prediction in cross-selling products. We use deep-learning algorithm to analyze almost 800,000 credit cards transactions. The results show that such unique data contains valuable information on the customers’ consumption behavior and it can significantly increase the predictive accuracy of a cross-selling model. In summary, we develop an auto-encoder to extract features from the transaction data and use them as input to a classifier. We demonstrate that such features also have predictive power that enhances the performance of the cross-selling model even further.

Suggested Citation

  • Noureddine Boustani & Ali Emrouznejad & Roya Gholami & Ozren Despic & Athina Ioannou, 2024. "Improving the predictive accuracy of the cross-selling of consumer loans using deep learning networks," Annals of Operations Research, Springer, vol. 339(1), pages 613-630, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-023-05209-5
    DOI: 10.1007/s10479-023-05209-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05209-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05209-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-023-05209-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.