IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i22p4661-d1281445.html
   My bibliography  Save this article

A Novel Fuzzy Unsupervised Quadratic Surface Support Vector Machine Based on DC Programming: An Application to Credit Risk Management

Author

Listed:
  • Tao Yu

    (School of Mathematics, Harbin Institute of Technology, Harbin 150001, China
    Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, China)

  • Wei Huang

    (College of Business, Southern University of Science and Technology, Shenzhen 518055, China
    National Center for Applied Mathematics Shenzhen, Southern University of Science and Technology, Shenzhen 518055, China)

  • Xin Tang

    (College of Business, Southern University of Science and Technology, Shenzhen 518055, China
    National Center for Applied Mathematics Shenzhen, Southern University of Science and Technology, Shenzhen 518055, China)

Abstract

Unsupervised classification is used in credit risk assessment to reduce human resource costs and make informed decisions in the shortest possible time. Although several studies show that support vector machine-based methods have better performance in unlabeled datasets, several factors still negatively affect these models, such as unstable results due to random initialization, reduced effectiveness due to kernel dependencies, and noise points and outliers. This paper introduces an unsupervised classification method based on a fuzzy unsupervised quadratic surface support vector machine without a kernel to avoid selecting related kernel parameters for credit risk assessment. In addition, we propose an innovative fuzzy membership function for reducing noise points and outliers in line with the direction of sample density variation. Fuzzy Unsupervised QSSVM (FUS-QSSVM) outperforms well-known SVM-based methods based on numerical tests on public benchmark credit data. In some real-world applications, the proposed method has significant potential as well as being effective, efficient, and robust. The algorithm can therefore increase the number of potential customers of financial institutions as well as increase profitability.

Suggested Citation

  • Tao Yu & Wei Huang & Xin Tang, 2023. "A Novel Fuzzy Unsupervised Quadratic Surface Support Vector Machine Based on DC Programming: An Application to Credit Risk Management," Mathematics, MDPI, vol. 11(22), pages 1-14, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:22:p:4661-:d:1281445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/22/4661/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/22/4661/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luo, Jian & Yan, Xin & Tian, Ye, 2020. "Unsupervised quadratic surface support vector machine with application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 280(3), pages 1008-1017.
    2. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    3. Sultan Almotairi & Elsayed Badr & Mustafa Abdul Salam & Hagar Ahmed, 2023. "Breast Cancer Diagnosis Using a Novel Parallel Support Vector Machine with Harris Hawks Optimization," Mathematics, MDPI, vol. 11(14), pages 1-25, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Yong & Qu, Yi & Chen, Zhensong & Mi, Yunlong & Wang, Yunong, 2024. "Improved credit risk prediction based on an integrated graph representation learning approach with graph transformation," European Journal of Operational Research, Elsevier, vol. 315(2), pages 786-801.
    2. Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
    3. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    4. Davidescu Adriana AnaMaria & Agafiței Marina-Diana & Strat Vasile Alecsandru & Dima Alina Mihaela, 2024. "Mapping the Landscape: A Bibliometric Analysis of Rating Agencies in the Era of Artificial Intelligence and Machine Learning," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 67-85.
    5. He, Ni & Yongqiao, Wang & Tao, Jiang & Zhaoyu, Chen, 2022. "Self-Adaptive bagging approach to credit rating," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    6. Li, Yibei & Wang, Ximei & Djehiche, Boualem & Hu, Xiaoming, 2020. "Credit scoring by incorporating dynamic networked information," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1103-1112.
    7. Davide Nicola Continanza & Andrea del Monaco & Marco di Lucido & Daniele Figoli & Pasquale Maddaloni & Filippo Quarta & Giuseppe Turturiello, 2023. "Stacking machine learning models for anomaly detection: comparing AnaCredit to other banking data sets," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59, Bank for International Settlements.
    8. Lismont, Jasmien & Vanthienen, Jan & Baesens, Bart & Lemahieu, Wilfried, 2017. "Defining analytics maturity indicators: A survey approach," International Journal of Information Management, Elsevier, vol. 37(3), pages 114-124.
    9. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    10. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    11. Rasa Kanapickiene & Renatas Spicas, 2019. "Credit Risk Assessment Model for Small and Micro-Enterprises: The Case of Lithuania," Risks, MDPI, vol. 7(2), pages 1-23, June.
    12. Zhou, Jing & Li, Wei & Wang, Jiaxin & Ding, Shuai & Xia, Chengyi, 2019. "Default prediction in P2P lending from high-dimensional data based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    13. Hu'e Sullivan & Hurlin Christophe & P'erignon Christophe & Saurin S'ebastien, 2022. "Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring," Papers 2212.05866, arXiv.org, revised Jun 2023.
    14. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    15. Topuz, Kazim & Urban, Timothy L. & Yildirim, Mehmet B., 2024. "A Markovian score model for evaluating provider performance for continuity of care—An explainable analytics approach," European Journal of Operational Research, Elsevier, vol. 317(2), pages 341-351.
    16. Shiqi Fang & Zexun Chen & Jake Ansell, 2024. "Peer-induced Fairness: A Causal Approach for Algorithmic Fairness Auditing," Papers 2408.02558, arXiv.org, revised Sep 2024.
    17. Cao Son Tran & Dan Nicolau & Richi Nayak & Peter Verhoeven, 2021. "Modeling Credit Risk: A Category Theory Perspective," JRFM, MDPI, vol. 14(7), pages 1-21, July.
    18. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
    19. Ivan Tikshaev & Roman Kulshin & Gennadii Volokitin & Pavel Senchenko & Anatoly Sidorov, 2022. "The Possibilities of Using Scoring to Determine the Relevance of Software Development Tenders," Mathematics, MDPI, vol. 10(24), pages 1-13, December.
    20. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:22:p:4661-:d:1281445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.