Author
Listed:
- Mazin Alahmadi
(Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)
Abstract
Addressing resource scarcity and climate change necessitates a transition to sustainable consumption and circular economy models, fostering environmental, social, and economic resilience. This study introduces a deep learning-based ensemble framework to optimize initial public offering (IPO) performance prediction while extending its application to circular economy processes, such as resource recovery and waste reduction. The framework incorporates advanced techniques, including hyperparameter optimization, dynamic metric adaptation (DMA), and the synthetic minority oversampling technique (SMOTE), to address challenges such as class imbalance, risk-adjusted metric enhancement, and robust forecasting. Experimental results demonstrate high predictive performance, achieving an accuracy of 76%, precision of 83%, recall of 75%, and an AUC of 0.9038. Among ensemble methods, Bagging achieved the highest AUC (0.90), outperforming XGBoost (0.88) and random forest (0.75). Cross-validation confirmed the framework’s reliability with a median AUC of 0.85 across ten folds. When applied to circular economy scenarios, the model effectively predicted sustainability metrics, achieving R² values of 0.76 for both resource recovery and waste reduction with a low mean absolute error (MAE = 0.11). These results highlight the potential to align financial forecasting with environmental sustainability objectives. This study underscores the transformative potential of deep learning in addressing financial and sustainability challenges, demonstrating how AI-driven models can integrate economic and environmental goals. By enabling robust IPO predictions and enhancing circular economy outcomes, the proposed framework aligns with Industry 5.0’s vision for human-centric, data-driven, and sustainable industrial innovation, contributing to resilient economic growth and long-term environmental stewardship.
Suggested Citation
Mazin Alahmadi, 2025.
"A Deep Learning-Based Ensemble Framework to Predict IPOs Performance for Sustainable Economic Development,"
Sustainability, MDPI, vol. 17(3), pages 1-29, January.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:3:p:827-:d:1572476
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:827-:d:1572476. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.