IDEAS home Printed from https://ideas.repec.org/a/inm/orisre/v33y2022i3p765-783.html
   My bibliography  Save this article

Know Where to Invest: Platform Risk Evaluation in Online Lending

Author

Listed:
  • Zhao Wang

    (School of Management, Hefei University of Technology, Hefei, Anhui 230009, P.R. China)

  • Cuiqing Jiang

    (School of Management, Hefei University of Technology, Hefei, Anhui 230009, P.R. China)

  • Huimin Zhao

    (Sheldon B. Lubar School of Business, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211)

Abstract

Although enjoying rapid development, online lending also endures some unusual risk, that is, platform risk. As prior research on default risk evaluation in online lending largely focuses on the micro listing level, we advocate a new research problem at the macro platform level, platform risk evaluation , and explore types of information and methods that are effective in predicting platform risk. We identify four types of information, that is, platform characteristic, risk management, commercial competition, and online word of mouth, by categorizing the available features based on the aspects they reflect and examine their utilities, separately and jointly, in predicting platform risk. We also propose the use of survival analysis, especially the mixture survival model, in predicting whether and when a platform will default. Considering the essential causes and characteristics of different default events, we differentiate two types of default platforms, namely, problematic and failed platforms, and accommodate them using competing risk analysis. We carry out a cross-stage analysis using data crawled from two leading web portals for online lending in China with the two stages separated by the recent dramatic policy intervention. Our results demonstrate the competitive predictive ability of survival analysis as compared with classification-based models. The results also reveal the differences among the four identified factors in terms of predictive utility, the heterogeneity between the two types of default platforms, and differences between the start-up and stable periods of platform development. Additionally, we identify some key features using Shapley values and examine the effects of these key features. Based on the results, we derive some insights and examine the cross-stage changes and commonalities. We provide both lessons learned from the past and practical implications for market managers and lenders in the current online lending market.

Suggested Citation

  • Zhao Wang & Cuiqing Jiang & Huimin Zhao, 2022. "Know Where to Invest: Platform Risk Evaluation in Online Lending," Information Systems Research, INFORMS, vol. 33(3), pages 765-783, September.
  • Handle: RePEc:inm:orisre:v:33:y:2022:i:3:p:765-783
    DOI: 10.1287/isre.2021.1083
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/isre.2021.1083
    Download Restriction: no

    File URL: https://libkey.io/10.1287/isre.2021.1083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fleisher, Belton & Li, Haizheng & Zhao, Min Qiang, 2010. "Human capital, economic growth, and regional inequality in China," Journal of Development Economics, Elsevier, vol. 92(2), pages 215-231, July.
    2. Guo, Yanhong & Zhou, Wenjun & Luo, Chunyu & Liu, Chuanren & Xiong, Hui, 2016. "Instance-based credit risk assessment for investment decisions in P2P lending," European Journal of Operational Research, Elsevier, vol. 249(2), pages 417-426.
    3. Yang Jiang & Yi-Chun (Chad) Ho & Xiangbin Yan & Yong Tan, 2020. "When Online Lending Meets Real Estate: Examining Investment Decisions in Lending-Based Real Estate Crowdfunding," Information Systems Research, INFORMS, vol. 31(3), pages 715-730, September.
    4. Jiménez, Gabriel & Lopez, Jose A. & Saurina, Jesús, 2013. "How does competition affect bank risk-taking?," Journal of Financial Stability, Elsevier, vol. 9(2), pages 185-195.
    5. A. Adam Ding & Shaonan Tian & Yan Yu & Hui Guo, 2012. "A Class of Discrete Transformation Survival Models With Application to Default Probability Prediction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 990-1003, September.
    6. Mehmet Nar, 2014. "Credit Risk Management in the Financial Markets," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 4(4), pages 1-8.
    7. Kun Liang & Cuiqing Jiang & Zhangxi Lin & Weihong Ning & Zelin Jia, 2017. "The nature of sellers’ cyber credit in C2C e-commerce: the perspective of social capital," Electronic Commerce Research, Springer, vol. 17(1), pages 133-147, March.
    8. Jairaj Gupta & Andros Gregoriou & Tahera Ebrahimi, 2018. "Empirical comparison of hazard models in predicting SMEs failure," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 437-466, March.
    9. Yonghan Ju & So Young Sohn, 2015. "Stress test for a technology credit guarantee fund based on survival analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(3), pages 463-475, March.
    10. Jingxing (Rowena) Gan & Gerry Tsoukalas & Serguei Netessine, 2021. "Initial Coin Offerings, Speculation, and Asset Tokenization," Management Science, INFORMS, vol. 67(2), pages 914-931, February.
    11. David Martinez-Miera & Rafael Repullo, 2010. "Does Competition Reduce the Risk of Bank Failure?," The Review of Financial Studies, Society for Financial Studies, vol. 23(10), pages 3638-3664, October.
    12. Paolo Roma & Esther Gal-Or & Rachel R. Chen, 2018. "Reward-Based Crowdfunding Campaigns: Informational Value and Access to Venture Capital," Information Systems Research, INFORMS, vol. 29(3), pages 679-697, September.
    13. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    14. Alok Gupta, 2018. "Editorial—Traits of Successful Research Contributions for Publication in ISR : Some Thoughts for Authors and Reviewers," Information Systems Research, INFORMS, vol. 29(4), pages 779-786, December.
    15. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    16. Riza Emekter & Yanbin Tu & Benjamas Jirasakuldech & Min Lu, 2015. "Evaluating credit risk and loan performance in online Peer-to-Peer (P2P) lending," Applied Economics, Taylor & Francis Journals, vol. 47(1), pages 54-70, January.
    17. Mingfeng Lin & Nagpurnanand R. Prabhala & Siva Viswanathan, 2013. "Judging Borrowers by the Company They Keep: Friendship Networks and Information Asymmetry in Online Peer-to-Peer Lending," Management Science, INFORMS, vol. 59(1), pages 17-35, August.
    18. Cumming, Douglas J. & Johan, Sofia A. & Zhang, Yelin, 2019. "The role of due diligence in crowdfunding platforms," Journal of Banking & Finance, Elsevier, vol. 108(C).
    19. Xianghua Lu & Sulin Ba & Lihua Huang & Yue Feng, 2013. "Promotional Marketing or Word-of-Mouth? Evidence from Online Restaurant Reviews," Information Systems Research, INFORMS, vol. 24(3), pages 596-612, September.
    20. Lore Dirick & Gerda Claeskens & Bart Baesens, 2017. "Time to default in credit scoring using survival analysis: a benchmark study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 652-665, June.
    21. Terrence Hendershott & Michael X. Zhang & J. Leon Zhao & Eric Zheng, 2017. "Call for Papers—Special Issue of Information Systems Research Fintech – Innovating the Financial Industry Through Emerging Information Technologies," Information Systems Research, INFORMS, vol. 28(4), pages 885-886, December.
    22. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn C., 2012. "Mixture cure models in credit scoring: If and when borrowers default," European Journal of Operational Research, Elsevier, vol. 218(1), pages 132-139.
    23. Paul A. Pavlou & Angelika Dimoka, 2006. "The Nature and Role of Feedback Text Comments in Online Marketplaces: Implications for Trust Building, Price Premiums, and Seller Differentiation," Information Systems Research, INFORMS, vol. 17(4), pages 392-414, December.
    24. Jiaqi Yan & Wayne Yu & J. Leon Zhao, 2015. "How signaling and search costs affect information asymmetry in P2P lending: the economics of big data," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 1(1), pages 1-11, December.
    25. Maria Stepanova & Lyn Thomas, 2002. "Survival Analysis Methods for Personal Loan Data," Operations Research, INFORMS, vol. 50(2), pages 277-289, April.
    26. Figlewski, Stephen & Frydman, Halina & Liang, Weijian, 2012. "Modeling the effect of macroeconomic factors on corporate default and credit rating transitions," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 87-105.
    27. Ahmed Abbasi & Jingjing Li & Donald Adjeroh & Marie Abate & Wanhong Zheng, 2019. "Don’t Mention It? Analyzing User-Generated Content Signals for Early Adverse Event Warnings," Information Systems Research, INFORMS, vol. 30(3), pages 1007-1028, September.
    28. Yeujun Yoon & Yu Li & Yan Feng, 2019. "Factors affecting platform default risk in online peer-to-peer (P2P) lending business: an empirical study using Chinese online P2P platform data," Electronic Commerce Research, Springer, vol. 19(1), pages 131-158, March.
    29. Jianjun Li & Sara Hsu & Zhang Chen & Yang Chen, 2016. "Risks of P2P Lending Platforms in China: Modeling Failure Using a Cox Hazard Model," Chinese Economy, Taylor & Francis Journals, vol. 49(3), pages 161-172, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yang & Zhou, Qiang & Wang, Xu, 2023. "Joint price and quality optimization strategy in crowdfunding campaign," International Journal of Production Economics, Elsevier, vol. 263(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhiyong & Li, Aimin & Bellotti, Anthony & Yao, Xiao, 2023. "The profitability of online loans: A competing risks analysis on default and prepayment," European Journal of Operational Research, Elsevier, vol. 306(2), pages 968-985.
    2. Jiang, Cuiqing & Wang, Zhao & Zhao, Huimin, 2019. "A prediction-driven mixture cure model and its application in credit scoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 20-31.
    3. Xia, Yufei & Zhao, Junhao & He, Lingyun & Li, Yinguo & Yang, Xiaoli, 2021. "Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1590-1613.
    4. Carlos Serrano-Cinca & Begoña Gutiérrez-Nieto & Luz López-Palacios, 2015. "Determinants of Default in P2P Lending," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    5. Samuel Ribeiro-Navarrete & Juan Piñeiro-Chousa & M. Ángeles López-Cabarcos & Daniel Palacios-Marqués, 2022. "Crowdlending: mapping the core literature and research frontiers," Review of Managerial Science, Springer, vol. 16(8), pages 2381-2411, November.
    6. Yeh, Jen-Yin & Chiu, Hsin-Yu & Huang, Jhih-Huei, 2024. "Predicting failure of P2P lending platforms through machine learning: The case in China," Finance Research Letters, Elsevier, vol. 59(C).
    7. Dirick, Lore & Claeskens, Gerda & Vasnev, Andrey & Baesens, Bart, 2022. "A hierarchical mixture cure model with unobserved heterogeneity for credit risk," Econometrics and Statistics, Elsevier, vol. 22(C), pages 39-55.
    8. Xueru Chen & Xiaoji Hu & Shenglin Ben, 2021. "How do reputation, structure design and FinTech ecosystem affect the net cash inflow of P2P lending platforms? Evidence from China," Electronic Commerce Research, Springer, vol. 21(4), pages 1055-1082, December.
    9. Käfer Benjamin, 2018. "Peer-to-Peer Lending – A (Financial Stability) Risk Perspective," Review of Economics, De Gruyter, vol. 69(1), pages 1-25, April.
    10. Xi Yang & Wenjuan Fan & Shanlin Yang, 2020. "Identifying the Influencing Factors on Investors’ Investment Behavior: An Empirical Study Focusing on the Chinese P2P Lending Market," Sustainability, MDPI, vol. 12(13), pages 1-21, July.
    11. Ligang Zhou & Chao Ma, 2023. "A Comparison of Different Rules on Loans Evaluation in Peer-to-Peer Lending by Gradient Boosting Models Under Moving Windows with Two Timestamps," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1481-1504, December.
    12. Gaigalienė Asta & Česnys Dovydas, 2018. "Determinants of Default in Lithuanian Peer-To-Peer Platforms," Management of Organizations: Systematic Research, Sciendo, vol. 80(1), pages 19-36, December.
    13. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    14. Ajay Byanjankar & József Mezei & Markku Heikkilä, 2021. "Data‐driven optimization of peer‐to‐peer lending portfolios based on the expected value framework," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(2), pages 119-129, April.
    15. Na Sun & Liangrong Song & Yan Sun, 2021. "Fuze Effect: A Landmine in the Way of Sustainable Development of FinTech—The Lessons from the Peer-To-Peer Risk Outbreak," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    16. Liu, He & Qiao, Han & Wang, Shouyang & Li, Yuze, 2019. "Platform Competition in Peer-to-Peer Lending Considering Risk Control Ability," European Journal of Operational Research, Elsevier, vol. 274(1), pages 280-290.
    17. Benjamin Käfer, 2016. "Peer-to-Peer Lending – A (Financial Stability) Risk Perspective," MAGKS Papers on Economics 201622, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    18. Hyunwoo Woo & So Young Sohn, 2022. "A credit scoring model based on the Myers–Briggs type indicator in online peer-to-peer lending," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-19, December.
    19. Richard Chamboko & Jorge Miguel Bravo, 2020. "A Multi-State Approach to Modelling Intermediate Events and Multiple Mortgage Loan Outcomes," Risks, MDPI, vol. 8(2), pages 1-29, June.
    20. Zhang, Zan & Hu, Wenjun & Chang, Tsangyao, 2019. "Nonlinear effects of P2P lending on bank loans in a Panel Smooth Transition Regression model," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 468-473.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orisre:v:33:y:2022:i:3:p:765-783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.