IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04529011.html
   My bibliography  Save this paper

Interpretable Machine Learning Using Partial Linear Models

Author

Listed:
  • Emmanuel Flachaire

    (AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique, AMU - Aix Marseille Université, CNRS - Centre National de la Recherche Scientifique)

  • Sullivan Hué

    (AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique, AMU - Aix Marseille Université, CNRS - Centre National de la Recherche Scientifique)

  • Sébastien Laurent

    (AMU - Aix Marseille Université, CNRS - Centre National de la Recherche Scientifique, AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique, Aix-Marseille Graduate School of Management)

  • Gilles Hacheme

    (AMU - Aix Marseille Université, CNRS - Centre National de la Recherche Scientifique, AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

Abstract

Despite their high predictive performance, random forest and gradient boosting are often considered as black boxes which has raised concerns from practitioners and regulators. As an alternative, we suggest using partial linear models that are inherently interpretable. Specifically, we propose to combine parametric and non‐parametric functions to accurately capture linearities and non‐linearities prevailing between dependent and explanatory variables, and a variable selection procedure to control for overfitting issues. Estimation relies on a two‐step procedure building upon the double residual method. We illustrate the predictive performance and interpretability of our approach on a regression problem.

Suggested Citation

  • Emmanuel Flachaire & Sullivan Hué & Sébastien Laurent & Gilles Hacheme, 2023. "Interpretable Machine Learning Using Partial Linear Models," Post-Print hal-04529011, HAL.
  • Handle: RePEc:hal:journl:hal-04529011
    DOI: 10.1111/obes.12592
    Note: View the original document on HAL open archive server: https://hal.science/hal-04529011
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christophe Hurlin & Christophe Pérignon, 2019. "Machine learning et nouvelles sources de données pour le scoring de crédit," Revue d'économie financière, Association d'économie financière, vol. 0(3), pages 21-50.
    2. Hendry, David F., 2000. "Econometrics: Alchemy or Science?: Essays in Econometric Methodology," OUP Catalogue, Oxford University Press, number 9780198293545.
    3. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    4. Hendry, David F. & Johansen, Søren, 2015. "Model Discovery And Trygve Haavelmo’S Legacy," Econometric Theory, Cambridge University Press, vol. 31(1), pages 93-114, February.
    5. Bin Yu & Rebecca Barter, 2020. "The Data Science Process: One Culture," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 672-674, April.
    6. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2023. "Robust Discovery of Regression Models," Econometrics and Statistics, Elsevier, vol. 26(C), pages 31-51.
    7. Bradley Efron, 2020. "Prediction, Estimation, and Attribution," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 636-655, April.
    8. Søren Johansen & Bent Nielsen, 2016. "Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 321-348, June.
    9. Desai, Vijay S. & Crook, Jonathan N. & Overstreet, George A., 1996. "A comparison of neural networks and linear scoring models in the credit union environment," European Journal of Operational Research, Elsevier, vol. 95(1), pages 24-37, November.
    10. Daniel W. Apley & Jingyu Zhu, 2020. "Visualizing the effects of predictor variables in black box supervised learning models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1059-1086, September.
    11. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2018. "Econometrics and Machine Learning," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 505-506, pages 147-169.
    12. Bradley Efron, 2020. "Prediction, Estimation, and Attribution," International Statistical Review, International Statistical Institute, vol. 88(S1), pages 28-59, December.
    13. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    14. David F. Hendry & Søren Johansen, 2011. "The Properties of Model Selection when Retaining Theory Variables," CREATES Research Papers 2011-36, Department of Economics and Business Economics, Aarhus University.
    15. Castle, Jennifer L. & Clements, Michael P. & Hendry, David F., 2013. "Forecasting by factors, by variables, by both or neither?," Journal of Econometrics, Elsevier, vol. 177(2), pages 305-319.
    16. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    17. Harrison, David Jr. & Rubinfeld, Daniel L., 1978. "Hedonic housing prices and the demand for clean air," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 81-102, March.
    18. Paleologo, Giuseppe & Elisseeff, André & Antonini, Gianluca, 2010. "Subagging for credit scoring models," European Journal of Operational Research, Elsevier, vol. 201(2), pages 490-499, March.
    19. Søren Johansen & Bent Nielsen, 2016. "Rejoinder: Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 374-381, June.
    20. Finlay, Steven, 2011. "Multiple classifier architectures and their application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 210(2), pages 368-378, April.
    21. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    22. Jurgen A. Doornik & Henrik Hansen, 2008. "An Omnibus Test for Univariate and Multivariate Normality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 927-939, December.
    23. Bin Yu & Rebecca Barter, 2020. "The Data Science Process: One Culture," International Statistical Review, International Statistical Institute, vol. 88(S1), pages 83-86, December.
    24. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sullivan Hué, 2022. "GAM(L)A: An econometric model for interpretable machine learning," French Stata Users' Group Meetings 2022 19, Stata Users Group.
    2. Emmanuel Flachaire & Gilles Hacheme & Sullivan Hu'e & S'ebastien Laurent, 2022. "GAM(L)A: An econometric model for interpretable Machine Learning," Papers 2203.11691, arXiv.org.
    3. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    4. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    5. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2023. "Robust Discovery of Regression Models," Econometrics and Statistics, Elsevier, vol. 26(C), pages 31-51.
    6. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    7. Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damage," Econometrics, MDPI, vol. 8(2), pages 1-24, May.
    8. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    9. Chen, Yujia & Calabrese, Raffaella & Martin-Barragan, Belen, 2024. "Interpretable machine learning for imbalanced credit scoring datasets," European Journal of Operational Research, Elsevier, vol. 312(1), pages 357-372.
    10. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    11. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    12. David H. Bernstein & Andrew B. Martinez, 2021. "Jointly Modeling Male and Female Labor Participation and Unemployment," Econometrics, MDPI, vol. 9(4), pages 1-14, December.
    13. Ericsson, Neil R., 2017. "How biased are U.S. government forecasts of the federal debt?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 543-559.
    14. Hendry, David F., 2018. "Deciding between alternative approaches in macroeconomics," International Journal of Forecasting, Elsevier, vol. 34(1), pages 119-135.
    15. Huei-Wen Teng & Michael Lee, 2019. "Estimation Procedures of Using Five Alternative Machine Learning Methods for Predicting Credit Card Default," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-27, September.
    16. Brian Chi-ang Lin & Siqi Zheng & Felix Pretis & Lea Schneider & Jason E. Smerdon & David F. Hendry, 2016. "Detecting Volcanic Eruptions In Temperature Reconstructions By Designed Break-Indicator Saturation," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 403-429, July.
    17. Chen, Dangxing & Ye, Jiahui & Ye, Weicheng, 2023. "Interpretable selective learning in credit risk," Research in International Business and Finance, Elsevier, vol. 65(C).
    18. Neil R. Ericsson & Mohammed H. I. Dore & Hassan Butt, 2022. "Detecting and Quantifying Structural Breaks in Climate," Econometrics, MDPI, vol. 10(4), pages 1-27, November.
    19. Tigges, Maximilian & Mestwerdt, Sönke & Tschirner, Sebastian & Mauer, René, 2024. "Who gets the money? A qualitative analysis of fintech lending and credit scoring through the adoption of AI and alternative data," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    20. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04529011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.