IDEAS home Printed from https://ideas.repec.org/p/ebg/heccah/1411.html
   My bibliography  Save this paper

The Fairness of Credit Scoring Models

Author

Listed:
  • Hurlin, Christophe

    (University of Orleans)

  • Pérignon, Christophe

    (HEC Paris)

  • Saurin, Sébastien

    (University of Orleans)

Abstract

In credit markets, screening algorithms aim to discriminate between good-type and bad-type borrowers. However, when doing so, they can also discriminate between individuals sharing a protected attribute (e.g. gender, age, racial origin) and the rest of the population. This can be unintentional and originate from the training dataset or from the model itself. We show how to formally test the algorithmic fairness of scoring models and how to identify the variables responsible for any lack of fairness. We then use these variables to optimize the fairness-performance trade-off. Our framework provides guidance on how algorithmic fairness can be monitored by lenders, controlled by their regulators, improved for the benefit of protected groups, while still maintaining a high level of forecasting accuracy.

Suggested Citation

  • Hurlin, Christophe & Pérignon, Christophe & Saurin, Sébastien, 2021. "The Fairness of Credit Scoring Models," HEC Research Papers Series 1411, HEC Paris.
  • Handle: RePEc:ebg:heccah:1411
    DOI: 10.2139/ssrn.3785882
    as

    Download full text from publisher

    File URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3785882
    File Function: Full text
    Download Restriction: no

    File URL: https://libkey.io/10.2139/ssrn.3785882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Fairness; Credit scoring models; Discrimination; Machine Learning; Artificial Intelligence;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • G29 - Financial Economics - - Financial Institutions and Services - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebg:heccah:1411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Antoine Haldemann (email available below). General contact details of provider: https://edirc.repec.org/data/hecpafr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.