IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v315y2024i2p802-817.html
   My bibliography  Save this article

Optimizing credit limit adjustments under adversarial goals using reinforcement learning

Author

Listed:
  • Alfonso-Sánchez, Sherly
  • Solano, Jesús
  • Correa-Bahnsen, Alejandro
  • Sendova, Kristina P.
  • Bravo, Cristián

Abstract

Reinforcement learning has been explored for many problems, from video games with deterministic environments to portfolio and operations management in which scenarios are stochastic; however, there have been few attempts to test these methods in banking problems. In this study, we sought to find and automatize an optimal credit card limit adjustment policy by employing reinforcement learning techniques. In particular, because of the historical data available, we considered two possible actions per customer, namely increasing or maintaining an individual’s current credit limit. To find this policy, we first formulated this decision-making question as an optimization problem in which the expected profit was maximized; therefore, we balanced two adversarial goals: maximizing the portfolio’s revenue and minimizing the portfolio’s provisions. Second, given the particularities of our problem, we used an offline learning strategy to simulate the impact of the action based on historical data from a super-app (i.e., a mobile application that offers various services from goods deliveries to financial products) in Latin America to train our reinforcement learning agent. Our results, based on the proposed methodology involving synthetic experimentation, show that a Double Q-learning agent with optimized hyperparameters can outperform other strategies and generate a non-trivial optimal policy not only reflecting the complex nature of this decision but offering an incentive to explore reinforcement learning in real-world banking scenarios. Our research establishes a conceptual structure for applying reinforcement learning framework to credit limit adjustment, presenting an objective technique to make these decisions primarily based on data-driven methods rather than relying only on expert-driven systems. We also study the use of alternative data for the problem of balance prediction, as the latter is a requirement of our proposed model. We find the use of such data does not always bring prediction gains.

Suggested Citation

  • Alfonso-Sánchez, Sherly & Solano, Jesús & Correa-Bahnsen, Alejandro & Sendova, Kristina P. & Bravo, Cristián, 2024. "Optimizing credit limit adjustments under adversarial goals using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 315(2), pages 802-817.
  • Handle: RePEc:eee:ejores:v:315:y:2024:i:2:p:802-817
    DOI: 10.1016/j.ejor.2023.12.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172300975X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.12.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Moor, Bram J. & Gijsbrechts, Joren & Boute, Robert N., 2022. "Reward shaping to improve the performance of deep reinforcement learning in perishable inventory management," European Journal of Operational Research, Elsevier, vol. 301(2), pages 535-545.
    2. So, Meko M.C. & Thomas, Lyn C., 2011. "Modelling the profitability of credit cards by Markov decision processes," European Journal of Operational Research, Elsevier, vol. 212(1), pages 123-130, July.
    3. Sofie De Cnudde & Julie Moeyersoms & Marija Stankova & Ellen Tobback & Vinayak Javaly & David Martens, 2019. "What does your Facebook profile reveal about your creditworthiness? Using alternative data for microfinance," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(3), pages 353-363, March.
    4. Martin Leo & Suneel Sharma & K. Maddulety, 2019. "Machine Learning in Banking Risk Management: A Literature Review," Risks, MDPI, vol. 7(1), pages 1-22, March.
    5. Jingyuan Wang & Yang Zhang & Ke Tang & Junjie Wu & Zhang Xiong, 2019. "AlphaStock: A Buying-Winners-and-Selling-Losers Investment Strategy using Interpretable Deep Reinforcement Attention Networks," Papers 1908.02646, arXiv.org.
    6. Fahner, Gerald, 2012. "Estimating causal effects of credit decisions," International Journal of Forecasting, Elsevier, vol. 28(1), pages 248-260.
    7. Stevenson, Matthew & Mues, Christophe & Bravo, Cristián, 2021. "The value of text for small business default prediction: A Deep Learning approach," European Journal of Operational Research, Elsevier, vol. 295(2), pages 758-771.
    8. Sumit Agarwal & Souphala Chomsisengphet & Neale Mahoney & Johannes Stroebel, 2018. "Do Banks Pass through Credit Expansions to Consumers Who want to Borrow?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 129-190.
    9. Niklas Bussmann & Paolo Giudici & Dimitri Marinelli & Jochen Papenbrock, 2021. "Explainable Machine Learning in Credit Risk Management," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 203-216, January.
    10. Harold Bierman, Jr. & Warren H. Hausman, 1970. "The Credit Granting Decision," Management Science, INFORMS, vol. 16(8), pages 519-532, April.
    11. Carroll, Christopher D. & Samwick, Andrew A., 1997. "The nature of precautionary wealth," Journal of Monetary Economics, Elsevier, vol. 40(1), pages 41-71, September.
    12. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    13. David B. Gross & Nicholas S. Souleles, 2000. "Consumer Response to Changes in Credit Supply: Evidence from Credit Card Data," Center for Financial Institutions Working Papers 00-04, Wharton School Center for Financial Institutions, University of Pennsylvania.
    14. Yan, Pengyu & Yu, Kaize & Chao, Xiuli & Chen, Zhibin, 2023. "An online reinforcement learning approach to charging and order-dispatching optimization for an e-hailing electric vehicle fleet," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1218-1233.
    15. Deniz Aydin, 2022. "Consumption Response to Credit Expansions: Evidence from Experimental Assignment of 45,307 Credit Lines," American Economic Review, American Economic Association, vol. 112(1), pages 1-40, January.
    16. Tong, Edward N.C. & Mues, Christophe & Brown, Iain & Thomas, Lyn C., 2016. "Exposure at default models with and without the credit conversion factor," European Journal of Operational Research, Elsevier, vol. 252(3), pages 910-920.
    17. Fulford, Scott L., 2015. "How important is variability in consumer credit limits?," Journal of Monetary Economics, Elsevier, vol. 72(C), pages 42-63.
    18. Cenying Yang & Yihao Feng & Andrew Whinston, 2022. "Dynamic Pricing and Information Disclosure for Fresh Produce: An Artificial Intelligence Approach," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 155-171, January.
    19. Schnaubelt, Matthias, 2022. "Deep reinforcement learning for the optimal placement of cryptocurrency limit orders," European Journal of Operational Research, Elsevier, vol. 296(3), pages 993-1006.
    20. Qian Ma & Biying Shou & Jianwei Huang & Tamer Başar, 2021. "Monopoly Pricing with Participation‐Dependent Social Learning About Quality of Service," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4004-4022, November.
    21. Tobias Berg & Valentin Burg & Ana Gombović & Manju Puri, 2020. "On the Rise of FinTechs: Credit Scoring Using Digital Footprints," The Review of Financial Studies, Society for Financial Studies, vol. 33(7), pages 2845-2897.
    22. Majid Bazarbash, 2019. "FinTech in Financial Inclusion: Machine Learning Applications in Assessing Credit Risk," IMF Working Papers 2019/109, International Monetary Fund.
    23. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    24. Luisa Roa & Alejandro Correa-Bahnsen & Gabriel Suarez & Fernando Cort'es-Tejada & Mar'ia A. Luque & Cristi'an Bravo, 2020. "Super-App Behavioral Patterns in Credit Risk Models: Financial, Statistical and Regulatory Implications," Papers 2005.14658, arXiv.org, revised Jan 2021.
    25. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hugo E. Caceres & Ben Moews, 2024. "Evaluating utility in synthetic banking microdata applications," Papers 2410.22519, arXiv.org.
    2. Scott L. Fulford & Joanna Stavins, 2024. "Income and the CARD Act’s Ability‐to‐Pay Rule in the US Credit Card Market," Working Papers 24-3, Federal Reserve Bank of Boston.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    2. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
    3. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    4. Lisa Crosato & Caterina Liberati & Marco Repetto, 2021. "Look Who's Talking: Interpretable Machine Learning for Assessing Italian SMEs Credit Default," Papers 2108.13914, arXiv.org, revised Sep 2021.
    5. Luisa Roa & Andr'es Rodr'iguez-Rey & Alejandro Correa-Bahnsen & Carlos Valencia, 2021. "Supporting Financial Inclusion with Graph Machine Learning and Super-App Alternative Data," Papers 2102.09974, arXiv.org.
    6. Tigges, Maximilian & Mestwerdt, Sönke & Tschirner, Sebastian & Mauer, René, 2024. "Who gets the money? A qualitative analysis of fintech lending and credit scoring through the adoption of AI and alternative data," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    7. Lukas, Moritz & Nöth, Markus, 2022. "Voluntary minimum repayments and borrower heterogeneity: Evidence from revolving consumer credit," Journal of Banking & Finance, Elsevier, vol. 135(C).
    8. Christopher D. Carroll & Edmund Crawley & Jiri Slacalek & Kiichi Tokuoka & Matthew N. White, 2020. "Sticky Expectations and Consumption Dynamics," American Economic Journal: Macroeconomics, American Economic Association, vol. 12(3), pages 40-76, July.
    9. Francisco Gomes & Michael Haliassos & Tarun Ramadorai, 2021. "Household Finance," Journal of Economic Literature, American Economic Association, vol. 59(3), pages 919-1000, September.
    10. Wei Pan & Jide Li & Xiaoqiang Li, 2020. "Portfolio Learning Based on Deep Learning," Future Internet, MDPI, vol. 12(11), pages 1-13, November.
    11. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    12. Nadia Ayed & Khemaies Bougatef, 2024. "Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1803-1835, September.
    13. Cookson, J. Anthony & Gilje, Erik P. & Heimer, Rawley Z., 2022. "Shale shocked: Cash windfalls and household debt repayment," Journal of Financial Economics, Elsevier, vol. 146(3), pages 905-931.
    14. Yang, Kaiyuan & Huang, Houjing & Vandans, Olafs & Murali, Adithya & Tian, Fujia & Yap, Roland H.C. & Dai, Liang, 2023. "Applying deep reinforcement learning to the HP model for protein structure prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    15. Nenad Milojević & Srdjan Redzepagic, 2021. "Prospects of Artificial Intelligence and Machine Learning Application in Banking Risk Management," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 10(3), pages 41-57.
    16. Shi, Yong & Qu, Yi & Chen, Zhensong & Mi, Yunlong & Wang, Yunong, 2024. "Improved credit risk prediction based on an integrated graph representation learning approach with graph transformation," European Journal of Operational Research, Elsevier, vol. 315(2), pages 786-801.
    17. Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
    18. Mehran Taghian & Ahmad Asadi & Reza Safabakhsh, 2021. "A Reinforcement Learning Based Encoder-Decoder Framework for Learning Stock Trading Rules," Papers 2101.03867, arXiv.org.
    19. Tanja Verster & Erika Fourie, 2023. "The Changing Landscape of Financial Credit Risk Models," IJFS, MDPI, vol. 11(3), pages 1-15, August.
    20. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:315:y:2024:i:2:p:802-817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.