Conversion uplift in e-commerce: A systematic benchmark of modeling strategies
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lan Zhao & Jishan Zhu, 2010. "Internet Marketing Budget Allocation: From Practitioner'S Perspective," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 9(05), pages 779-797.
- B Baesens & T Van Gestel & S Viaene & M Stepanova & J Suykens & J Vanthienen, 2003. "Benchmarking state-of-the-art classification algorithms for credit scoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 627-635, June.
- Gabor Melli & Xindong Wu & Paul Beinat & Francesco Bonchi & Longbing Cao & Rong Duan & Christos Faloutsos & Rayid Ghani & Brendan Kitts & Bart Goethals & Geoff Mclachlan & Jian Pei & Ashok Srivastava , 2012. "Top-10 Data Mining Case Studies," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 389-400.
- Amy Wenxuan Ding & Shibo Li & Patrali Chatterjee, 2015. "Learning User Real-Time Intent for Optimal Dynamic Web Page Transformation," Information Systems Research, INFORMS, vol. 26(2), pages 339-359, June.
- Eugenia Y. Huang & Chia-jung Tsui, 2016. "Assessing customer retention in B2C electronic commerce: an empirical study," Journal of Marketing Analytics, Palgrave Macmillan, vol. 4(4), pages 172-185, December.
- Philippe Baecke & Dirk Van Den Poel, 2010.
"Improving Purchasing Behavior Predictions By Data Augmentation With Situational Variables,"
International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 9(06), pages 853-872.
- P. Baecke & D. Van Den Poel, 2010. "Improving purchasing behavior predictions by data augmentation with situational variables," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/658, Ghent University, Faculty of Economics and Business Administration.
- Lu Tian & Ash A. Alizadeh & Andrew J. Gentles & Robert Tibshirani, 2014. "A Simple Method for Estimating Interactions Between a Treatment and a Large Number of Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1517-1532, December.
- Shaowen Hua, 2016. "WhatMakes Underwriting and Non-Underwriting Clients of Brokerage Firms Receive Different Recommendations? An Application of Uplift Random Forest Model," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 5(3), pages 42-56, April.
- Ballings, Michel & Van den Poel, Dirk, 2015. "CRM in social media: Predicting increases in Facebook usage frequency," European Journal of Operational Research, Elsevier, vol. 244(1), pages 248-260.
- Van den Poel, Dirk & Buckinx, Wouter, 2005.
"Predicting online-purchasing behaviour,"
European Journal of Operational Research, Elsevier, vol. 166(2), pages 557-575, October.
- W.R Buckinx & D. Van Den Poel, 2003. "Predicting Online Purchasing Behavior," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 03/195, Ghent University, Faculty of Economics and Business Administration.
- Susan Athey & Guido W. Imbens, 2017.
"The State of Applied Econometrics: Causality and Policy Evaluation,"
Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
- Susan Athey & Guido Imbens, 2016. "The State of Applied Econometrics - Causality and Policy Evaluation," Papers 1607.00699, arXiv.org.
- Zhengxin Chen, 2006. "From Data Mining To Behavior Mining," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 703-711.
- Lessmann, Stefan & Coussement, Kristof & De Bock, Koen W. & Haupt, Johannes, 2018. "Targeting customers for profit: An ensemble learning framework to support marketing decision making," IRTG 1792 Discussion Papers 2018-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Dost, Florian & Wilken, Robert & Eisenbeiss, Maik & Skiera, Bernd, 2014. "On the Edge of Buying: A Targeting Approach for Indecisive Buyers Based on Willingness-to-Pay Ranges," Journal of Retailing, Elsevier, vol. 90(3), pages 393-407.
- Eva Ascarza & Peter S. Fader & Bruce G. S. Hardie, 2017. "Marketing Models for the Customer-Centric Firm," International Series in Operations Research & Management Science, in: Berend Wierenga & Ralf van der Lans (ed.), Handbook of Marketing Decision Models, edition 2, chapter 0, pages 297-329, Springer.
- Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
- Tarek Ben Rhouma & Georges Zaccour, 2018. "Optimal Marketing Strategies for the Acquisition and Retention of Service Subscriber," Management Science, INFORMS, vol. 64(6), pages 2609-2627, June.
- Kallol Bagchi & Somnath Mukhopadhyay, 2006. "Predicting Global Internet Growth Using Augmented Diffusion, Fuzzy Regression And Neural Network Models," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 155-171.
- Ieva, M. & De Canio, F. & Ziliani, C., 2018. "Daily deal shoppers: What drives social couponing?," Journal of Retailing and Consumer Services, Elsevier, vol. 40(C), pages 299-303.
- Kristof Coussement & Paul Harrigan & Dries Benoit, 2015. "Improving direct mail targeting through customer response modeling," Post-Print hal-02990995, HAL.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Robin Gubela & Artem Bequé & Stefan Lessmann & Fabian Gebert, 2019. "Conversion Uplift in E-Commerce: A Systematic Benchmark of Modeling Strategies," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 747-791, May.
- Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
- Arno de Caigny & Kristof Coussement & Koen de Bock, 2020. "Leveraging fine-grained transaction data for customer life event predictions," Post-Print hal-02507998, HAL.
- Lessmann, Stefan & Coussement, Kristof & De Bock, Koen W. & Haupt, Johannes, 2018. "Targeting customers for profit: An ensemble learning framework to support marketing decision making," IRTG 1792 Discussion Papers 2018-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Gubela, Robin M. & Lessmann, Stefan & Jaroszewicz, Szymon, 2020. "Response transformation and profit decomposition for revenue uplift modeling," European Journal of Operational Research, Elsevier, vol. 283(2), pages 647-661.
- Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
- Lechner, Michael, 2018.
"Modified Causal Forests for Estimating Heterogeneous Causal Effects,"
IZA Discussion Papers
12040, Institute of Labor Economics (IZA).
- Lechner, Michael, 2019. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," CEPR Discussion Papers 13430, C.E.P.R. Discussion Papers.
- Lechner, Michael, 2019. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," Economics Working Paper Series 1901, University of St. Gallen, School of Economics and Political Science.
- Michael Lechner, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," Papers 1812.09487, arXiv.org, revised Jul 2019.
- Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021.
"Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence,"
The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," IZA Discussion Papers 12039, Institute of Labor Economics (IZA).
- Lechner, Michael & Knaus, Michael C. & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," CEPR Discussion Papers 13402, C.E.P.R. Discussion Papers.
- Knaus, Michael C. & Lechner, Michael & anthony.strittmatter@unisg.ch, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Economics Working Paper Series 1817, University of St. Gallen, School of Economics and Political Science.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Papers 1810.13237, arXiv.org, revised Dec 2018.
- Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
- De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
- Michael C Knaus, 2022.
"Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Knaus, Michael C., 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Economics Working Paper Series 2004, University of St. Gallen, School of Economics and Political Science.
- Knaus, Michael C., 2020. "Double Machine Learning Based Program Evaluation under Unconfoundedness," IZA Discussion Papers 13051, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
- Bart H. L. Overes & Michel van der Wel, 2021. "Modelling Sovereign Credit Ratings: Evaluating the Accuracy and Driving Factors using Machine Learning Techniques," Papers 2101.12684, arXiv.org, revised Jul 2021.
- Nadia Ayed & Khemaies Bougatef, 2024. "Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1803-1835, September.
- Teply, Petr & Polena, Michal, 2020. "Best classification algorithms in peer-to-peer lending," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
- Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022.
"Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects,"
European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
- Elena Ivona Dumitrescu & Sullivan Hué & Christophe Hurlin & Sessi Tokpavi, 2022. "Machine Learning for Credit Scoring: Improving Logistic Regression with Non Linear Decision Tree Effects," Post-Print hal-03331114, HAL.
- Chengbin Wang & Kuangnan Fang & Chenlu Zheng & Hechao Xu & Zewei Li, 2021. "Credit scoring of micro and small entrepreneurial firms in China," International Entrepreneurship and Management Journal, Springer, vol. 17(1), pages 29-43, March.
- Juan Laborda & Seyong Ryoo, 2021. "Feature Selection in a Credit Scoring Model," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
- Phillip Heiler & Michael C. Knaus, 2021.
"Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments,"
Papers
2110.01427, arXiv.org, revised Aug 2023.
- Heiler, Phillip & Knaus, Michael C., 2022. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," IZA Discussion Papers 15580, Institute of Labor Economics (IZA).
- Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020.
"Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds,"
LEO Working Papers / DR LEO
2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Elena Dumitrescu & Sullivan Hué & Christophe Hurlin & Sessi Tokpavi, 2021. "Machine Learning or Econometrics for Credit Scoring: Let's Get the Best of Both Worlds," Working Papers hal-02507499, HAL.
- Jiang, Cuiqing & Wang, Zhao & Zhao, Huimin, 2019. "A prediction-driven mixture cure model and its application in credit scoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 20-31.
More about this item
Keywords
e-commerce analytics; machine learning; uplift modeling; real-time targeting;All these keywords.
JEL classification:
- C00 - Mathematical and Quantitative Methods - - General - - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:irtgdp:2018062. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/wfhubde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.