IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v11y2024i1d10.1057_s41599-024-02700-7.html
   My bibliography  Save this article

Credit risk assessment using the factorization machine model with feature interactions

Author

Listed:
  • Jing Quan

    (Chongqing University of Technology)

  • Xuelian Sun

    (Chongqing University of Technology)

Abstract

The accuracy of credit risk evaluation is crucial for the profitability of any financial institution. The factorization machine is a widely available model that can effectively be utilized for classification or regression through appropriate feature transformation. In this article, we apply the factorization machine model to the field of credit risk assessment. Since some features of the credit risk assessment data are not numerical, one-hot encoding is used, resulting in sparse training data. However, the computational complexity of the factorization machine is polynomial. To illustrate the effectiveness of the factorization machine credit risk assessment model and compare its performance with other classification approaches such as logical regression, support vector machine, k-nearest neighbors, and artificial neural network, we conduct numerical experiments on four real-world credit risk evaluation datasets. The experimental results demonstrate that the proposed factorization machine credit risk assessment model achieves higher accuracy compared to other machine-learning models on real-world datasets and is computationally more efficient. Therefore, the factorization machine model can be considered as a suitable candidate for credit risk assessment.

Suggested Citation

  • Jing Quan & Xuelian Sun, 2024. "Credit risk assessment using the factorization machine model with feature interactions," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-02700-7
    DOI: 10.1057/s41599-024-02700-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-024-02700-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-024-02700-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Desai, Vijay S. & Crook, Jonathan N. & Overstreet, George A., 1996. "A comparison of neural networks and linear scoring models in the credit union environment," European Journal of Operational Research, Elsevier, vol. 95(1), pages 24-37, November.
    2. Krivorotov, George, 2023. "Machine learning-based profit modeling for credit card underwriting - implications for credit risk," Journal of Banking & Finance, Elsevier, vol. 149(C).
    3. C. C. Holmes & N. M. Adams, 2002. "A probabilistic nearest neighbour method for statistical pattern recognition," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 295-306, May.
    4. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    5. Malhotra, Rashmi & Malhotra, D. K., 2003. "Evaluating consumer loans using neural networks," Omega, Elsevier, vol. 31(2), pages 83-96, April.
    6. L C Thomas & R W Oliver & D J Hand, 2005. "A survey of the issues in consumer credit modelling research," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(9), pages 1006-1015, September.
    7. Malhotra, Rashmi & Malhotra, D. K., 2002. "Differentiating between good credits and bad credits using neuro-fuzzy systems," European Journal of Operational Research, Elsevier, vol. 136(1), pages 190-211, January.
    8. Martin Leo & Suneel Sharma & K. Maddulety, 2019. "Machine Learning in Banking Risk Management: A Literature Review," Risks, MDPI, vol. 7(1), pages 1-22, March.
    9. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
    10. Rayo Cantón, Salvador & Lara Rubio, Juan & Camino Blasco, David, 2010. "A Credit Scoring Model For Institutions Of Microfinance Under The Basel Ii Normative," Journal of Economics, Finance and Administrative Science, Universidad ESAN, vol. 15(28), pages 89-124.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huei-Wen Teng & Michael Lee, 2019. "Estimation Procedures of Using Five Alternative Machine Learning Methods for Predicting Credit Card Default," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-27, September.
    2. Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
    3. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring," European Journal of Operational Research, Elsevier, vol. 195(3), pages 942-959, June.
    4. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    5. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    6. Pulina, Manuela & Paba, Antonello, 2010. "A discrete choice approach to model credit card fraud," MPRA Paper 20019, University Library of Munich, Germany.
    7. Przemys{l}aw Biecek & Marcin Chlebus & Janusz Gajda & Alicja Gosiewska & Anna Kozak & Dominik Ogonowski & Jakub Sztachelski & Piotr Wojewnik, 2021. "Enabling Machine Learning Algorithms for Credit Scoring -- Explainable Artificial Intelligence (XAI) methods for clear understanding complex predictive models," Papers 2104.06735, arXiv.org.
    8. Ahmed Almustfa Hussin Adam Khatir & Marco Bee, 2022. "Machine Learning Models and Data-Balancing Techniques for Credit Scoring: What Is the Best Combination?," Risks, MDPI, vol. 10(9), pages 1-22, August.
    9. Jianhua Jiang & Xianqiu Meng & Yang Liu & Huan Wang, 2022. "An Enhanced TSA-MLP Model for Identifying Credit Default Problems," SAGE Open, , vol. 12(2), pages 21582440221, April.
    10. Zhixin Liu & Ping He & Bo Chen, 2019. "A Markov decision model for consumer term-loan collections," Review of Quantitative Finance and Accounting, Springer, vol. 52(4), pages 1043-1064, May.
    11. Brad S. Trinkle & Amelia A. Baldwin, 2007. "Interpretable credit model development via artificial neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 123-147, July.
    12. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    13. Brad S. Trinkle & Amelia A. Baldwin, 2016. "Research Opportunities for Neural Networks: The Case for Credit," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(3), pages 240-254, July.
    14. L C Thomas, 2010. "Consumer finance: challenges for operational research," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 41-52, January.
    15. Hong Wang & Qingsong Xu & Lifeng Zhou, 2015. "Large Unbalanced Credit Scoring Using Lasso-Logistic Regression Ensemble," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-20, February.
    16. Thomas Wainwright, 2011. "Elite Knowledges: Framing Risk and the Geographies of Credit," Environment and Planning A, , vol. 43(3), pages 650-665, March.
    17. B Baesens & T Van Gestel & S Viaene & M Stepanova & J Suykens & J Vanthienen, 2003. "Benchmarking state-of-the-art classification algorithms for credit scoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 627-635, June.
    18. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    19. Lkhagvadorj Munkhdalai & Tsendsuren Munkhdalai & Oyun-Erdene Namsrai & Jong Yun Lee & Keun Ho Ryu, 2019. "An Empirical Comparison of Machine-Learning Methods on Bank Client Credit Assessments," Sustainability, MDPI, vol. 11(3), pages 1-23, January.
    20. Ha-Thu Nguyen, 2015. "How is credit scoring used to predict default in China?," EconomiX Working Papers 2015-1, University of Paris Nanterre, EconomiX.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-02700-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.